Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bijadc | GIF version |
Description: Combine antecedents into a single biconditional. This inference is reminiscent of jadc 853. (Contributed by Jim Kingdon, 4-May-2018.) |
Ref | Expression |
---|---|
bijadc.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
bijadc.2 | ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
bijadc | ⊢ (DECID 𝜓 → ((𝜑 ↔ 𝜓) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr 129 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
2 | bijadc.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syli 37 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜒)) |
4 | biimp 117 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
5 | 4 | con3d 621 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
6 | bijadc.2 | . . 3 ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) | |
7 | 5, 6 | syli 37 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → 𝜒)) |
8 | 3, 7 | pm2.61ddc 851 | 1 ⊢ (DECID 𝜓 → ((𝜑 ↔ 𝜓) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |