ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bimsc1 Unicode version

Theorem bimsc1 948
Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
bimsc1  |-  ( ( ( ph  ->  ps )  /\  ( ch  <->  ( ps  /\ 
ph ) ) )  ->  ( ch  <->  ph ) )

Proof of Theorem bimsc1
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( ps  /\  ph )  ->  ph )
2 ancr 319 . . . 4  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ( ps 
/\  ph ) ) )
31, 2impbid2 142 . . 3  |-  ( (
ph  ->  ps )  -> 
( ( ps  /\  ph )  <->  ph ) )
43bibi2d 231 . 2  |-  ( (
ph  ->  ps )  -> 
( ( ch  <->  ( ps  /\ 
ph ) )  <->  ( ch  <->  ph ) ) )
54biimpa 294 1  |-  ( ( ( ph  ->  ps )  /\  ( ch  <->  ( ps  /\ 
ph ) ) )  ->  ( ch  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bm1.3ii  4085  bdbm1.3ii  13426
  Copyright terms: Public domain W3C validator