Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdbm1.3ii Unicode version

Theorem bdbm1.3ii 15789
Description: Bounded version of bm1.3ii 4164. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdbm1.3ii.bd  |- BOUNDED  ph
bdbm1.3ii.1  |-  E. x A. y ( ph  ->  y  e.  x )
Assertion
Ref Expression
bdbm1.3ii  |-  E. x A. y ( y  e.  x  <->  ph )
Distinct variable groups:    ph, x    x, y
Allowed substitution hint:    ph( y)

Proof of Theorem bdbm1.3ii
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdbm1.3ii.1 . . . . 5  |-  E. x A. y ( ph  ->  y  e.  x )
2 elequ2 2180 . . . . . . . 8  |-  ( x  =  z  ->  (
y  e.  x  <->  y  e.  z ) )
32imbi2d 230 . . . . . . 7  |-  ( x  =  z  ->  (
( ph  ->  y  e.  x )  <->  ( ph  ->  y  e.  z ) ) )
43albidv 1846 . . . . . 6  |-  ( x  =  z  ->  ( A. y ( ph  ->  y  e.  x )  <->  A. y
( ph  ->  y  e.  z ) ) )
54cbvexv 1941 . . . . 5  |-  ( E. x A. y (
ph  ->  y  e.  x
)  <->  E. z A. y
( ph  ->  y  e.  z ) )
61, 5mpbi 145 . . . 4  |-  E. z A. y ( ph  ->  y  e.  z )
7 bdbm1.3ii.bd . . . . 5  |- BOUNDED  ph
87bdsep1 15783 . . . 4  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
)
96, 8pm3.2i 272 . . 3  |-  ( E. z A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
109exan 1715 . 2  |-  E. z
( A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
11 19.42v 1929 . . . 4  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  <->  ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) ) )
12 bimsc1 965 . . . . . 6  |-  ( ( ( ph  ->  y  e.  z )  /\  (
y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  (
y  e.  x  <->  ph ) )
1312alanimi 1481 . . . . 5  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  A. y
( y  e.  x  <->  ph ) )
1413eximi 1622 . . . 4  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1511, 14sylbir 135 . . 3  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1615exlimiv 1620 . 2  |-  ( E. z ( A. y
( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1710, 16ax-mp 5 1  |-  E. x A. y ( y  e.  x  <->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1370   E.wex 1514  BOUNDED wbd 15710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-14 2178  ax-bdsep 15782
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bj-zfpair2  15808  bj-axun2  15813  bj-uniex2  15814
  Copyright terms: Public domain W3C validator