| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi2d | Unicode version | ||
| Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbid.1 |
|
| Ref | Expression |
|---|---|
| bibi2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 |
. . . . 5
| |
| 2 | 1 | pm5.74i 180 |
. . . 4
|
| 3 | 2 | bibi2i 227 |
. . 3
|
| 4 | pm5.74 179 |
. . 3
| |
| 5 | pm5.74 179 |
. . 3
| |
| 6 | 3, 4, 5 | 3bitr4i 212 |
. 2
|
| 7 | 6 | pm5.74ri 181 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 bibi12d 235 biantr 954 bimsc1 965 eujust 2055 euf 2058 ceqex 2899 reu6i 2963 axsep2 4162 zfauscl 4163 copsexg 4287 euotd 4298 cnveq0 5138 iotaval 5242 iota5 5252 eufnfv 5814 isoeq1 5869 isoeq3 5871 isores2 5881 isores3 5883 isotr 5884 isoini2 5887 riota5f 5923 caovordg 6113 caovord 6117 dfoprab4f 6278 frecabcl 6484 nnaword 6596 xpf1o 6940 ltanqg 7512 ltmnqg 7513 ltasrg 7882 axpre-ltadd 7998 prmdvdsexp 12412 subrgsubm 13938 bdsep2 15755 bdzfauscl 15759 |
| Copyright terms: Public domain | W3C validator |