Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibi2d | Unicode version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 |
Ref | Expression |
---|---|
bibi2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 | |
2 | 1 | pm5.74i 179 | . . . 4 |
3 | 2 | bibi2i 226 | . . 3 |
4 | pm5.74 178 | . . 3 | |
5 | pm5.74 178 | . . 3 | |
6 | 3, 4, 5 | 3bitr4i 211 | . 2 |
7 | 6 | pm5.74ri 180 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi1d 232 bibi12d 234 biantr 942 bimsc1 953 eujust 2016 euf 2019 ceqex 2853 reu6i 2917 axsep2 4101 zfauscl 4102 copsexg 4222 euotd 4232 cnveq0 5060 iotaval 5164 iota5 5173 eufnfv 5715 isoeq1 5769 isoeq3 5771 isores2 5781 isores3 5783 isotr 5784 isoini2 5787 riota5f 5822 caovordg 6009 caovord 6013 dfoprab4f 6161 frecabcl 6367 nnaword 6479 xpf1o 6810 ltanqg 7341 ltmnqg 7342 ltasrg 7711 axpre-ltadd 7827 prmdvdsexp 12080 bdsep2 13768 bdzfauscl 13772 |
Copyright terms: Public domain | W3C validator |