| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi2d | Unicode version | ||
| Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbid.1 |
|
| Ref | Expression |
|---|---|
| bibi2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 |
. . . . 5
| |
| 2 | 1 | pm5.74i 180 |
. . . 4
|
| 3 | 2 | bibi2i 227 |
. . 3
|
| 4 | pm5.74 179 |
. . 3
| |
| 5 | pm5.74 179 |
. . 3
| |
| 6 | 3, 4, 5 | 3bitr4i 212 |
. 2
|
| 7 | 6 | pm5.74ri 181 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 bibi12d 235 biantr 955 bimsc1 966 eujust 2057 euf 2060 ceqex 2904 reu6i 2968 axsep2 4174 zfauscl 4175 copsexg 4301 euotd 4312 cnveq0 5153 iotaval 5257 iota5 5267 eufnfv 5833 isoeq1 5888 isoeq3 5890 isores2 5900 isores3 5902 isotr 5903 isoini2 5906 riota5f 5942 caovordg 6132 caovord 6136 dfoprab4f 6297 frecabcl 6503 nnaword 6615 xpf1o 6961 ltanqg 7543 ltmnqg 7544 ltasrg 7913 axpre-ltadd 8029 prmdvdsexp 12555 subrgsubm 14081 bdsep2 15991 bdzfauscl 15995 |
| Copyright terms: Public domain | W3C validator |