| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2thd | Unicode version | ||
| Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
| Ref | Expression |
|---|---|
| 2thd.1 |
|
| 2thd.2 |
|
| Ref | Expression |
|---|---|
| 2thd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 |
. 2
| |
| 2 | 2thd.2 |
. 2
| |
| 3 | pm5.1im 173 |
. 2
| |
| 4 | 1, 2, 3 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biort 830 rspcime 2875 abvor0dc 3475 exmidsssn 4236 euotd 4288 nn0eln0 4657 elabrex 5807 elabrexg 5808 riota5f 5905 nntri3 6564 fin0 6955 omp1eomlem 7169 ctssdccl 7186 ismkvnex 7230 finacn 7287 acnccim 7355 nn1m1nn 9025 xrlttri3 9889 nltpnft 9906 ngtmnft 9909 xrrebnd 9911 xltadd1 9968 xsubge0 9973 xposdif 9974 xlesubadd 9975 xleaddadd 9979 iccshftr 10086 iccshftl 10088 iccdil 10090 icccntr 10092 fzaddel 10151 elfzomelpfzo 10324 xqltnle 10374 nnesq 10768 hashnncl 10904 zfz1isolemiso 10948 mod2eq1n2dvds 12061 m1exp1 12083 dfgcd3 12202 dvdssq 12223 pcdvdsb 12514 pceq0 12516 issubg3 13398 lmss 14566 lmres 14568 2omap 15726 |
| Copyright terms: Public domain | W3C validator |