| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2thd | Unicode version | ||
| Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
| Ref | Expression |
|---|---|
| 2thd.1 |
|
| 2thd.2 |
|
| Ref | Expression |
|---|---|
| 2thd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 |
. 2
| |
| 2 | 2thd.2 |
. 2
| |
| 3 | pm5.1im 173 |
. 2
| |
| 4 | 1, 2, 3 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biort 834 rspcime 2914 abvor0dc 3515 exmidsssn 4286 euotd 4341 nn0eln0 4712 elabrex 5881 elabrexg 5882 riota5f 5981 nntri3 6643 fin0 7047 omp1eomlem 7261 ctssdccl 7278 ismkvnex 7322 finacn 7386 acnccim 7458 nn1m1nn 9128 xrlttri3 9993 nltpnft 10010 ngtmnft 10013 xrrebnd 10015 xltadd1 10072 xsubge0 10077 xposdif 10078 xlesubadd 10079 xleaddadd 10083 iccshftr 10190 iccshftl 10192 iccdil 10194 icccntr 10196 fzaddel 10255 elfzomelpfzo 10437 xqltnle 10487 nnesq 10881 hashnncl 11017 zfz1isolemiso 11061 swrdspsleq 11199 mod2eq1n2dvds 12390 m1exp1 12412 dfgcd3 12531 dvdssq 12552 pcdvdsb 12843 pceq0 12845 issubg3 13729 lmss 14920 lmres 14922 2omap 16359 |
| Copyright terms: Public domain | W3C validator |