| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2thd | Unicode version | ||
| Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
| Ref | Expression |
|---|---|
| 2thd.1 |
|
| 2thd.2 |
|
| Ref | Expression |
|---|---|
| 2thd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 |
. 2
| |
| 2 | 2thd.2 |
. 2
| |
| 3 | pm5.1im 173 |
. 2
| |
| 4 | 1, 2, 3 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biort 831 rspcime 2884 abvor0dc 3484 exmidsssn 4246 euotd 4299 nn0eln0 4668 elabrex 5826 elabrexg 5827 riota5f 5924 nntri3 6583 fin0 6982 omp1eomlem 7196 ctssdccl 7213 ismkvnex 7257 finacn 7316 acnccim 7384 nn1m1nn 9054 xrlttri3 9919 nltpnft 9936 ngtmnft 9939 xrrebnd 9941 xltadd1 9998 xsubge0 10003 xposdif 10004 xlesubadd 10005 xleaddadd 10009 iccshftr 10116 iccshftl 10118 iccdil 10120 icccntr 10122 fzaddel 10181 elfzomelpfzo 10360 xqltnle 10410 nnesq 10804 hashnncl 10940 zfz1isolemiso 10984 swrdspsleq 11120 mod2eq1n2dvds 12190 m1exp1 12212 dfgcd3 12331 dvdssq 12352 pcdvdsb 12643 pceq0 12645 issubg3 13528 lmss 14718 lmres 14720 2omap 15932 |
| Copyright terms: Public domain | W3C validator |