| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2thd | Unicode version | ||
| Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
| Ref | Expression |
|---|---|
| 2thd.1 |
|
| 2thd.2 |
|
| Ref | Expression |
|---|---|
| 2thd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 |
. 2
| |
| 2 | 2thd.2 |
. 2
| |
| 3 | pm5.1im 173 |
. 2
| |
| 4 | 1, 2, 3 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biort 831 rspcime 2891 abvor0dc 3492 exmidsssn 4262 euotd 4317 nn0eln0 4686 elabrex 5849 elabrexg 5850 riota5f 5947 nntri3 6606 fin0 7008 omp1eomlem 7222 ctssdccl 7239 ismkvnex 7283 finacn 7347 acnccim 7419 nn1m1nn 9089 xrlttri3 9954 nltpnft 9971 ngtmnft 9974 xrrebnd 9976 xltadd1 10033 xsubge0 10038 xposdif 10039 xlesubadd 10040 xleaddadd 10044 iccshftr 10151 iccshftl 10153 iccdil 10155 icccntr 10157 fzaddel 10216 elfzomelpfzo 10397 xqltnle 10447 nnesq 10841 hashnncl 10977 zfz1isolemiso 11021 swrdspsleq 11158 mod2eq1n2dvds 12305 m1exp1 12327 dfgcd3 12446 dvdssq 12467 pcdvdsb 12758 pceq0 12760 issubg3 13643 lmss 14833 lmres 14835 2omap 16132 |
| Copyright terms: Public domain | W3C validator |