| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2thd | Unicode version | ||
| Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
| Ref | Expression |
|---|---|
| 2thd.1 |
|
| 2thd.2 |
|
| Ref | Expression |
|---|---|
| 2thd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 |
. 2
| |
| 2 | 2thd.2 |
. 2
| |
| 3 | pm5.1im 173 |
. 2
| |
| 4 | 1, 2, 3 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biort 831 rspcime 2884 abvor0dc 3484 exmidsssn 4247 euotd 4300 nn0eln0 4669 elabrex 5828 elabrexg 5829 riota5f 5926 nntri3 6585 fin0 6984 omp1eomlem 7198 ctssdccl 7215 ismkvnex 7259 finacn 7318 acnccim 7386 nn1m1nn 9056 xrlttri3 9921 nltpnft 9938 ngtmnft 9941 xrrebnd 9943 xltadd1 10000 xsubge0 10005 xposdif 10006 xlesubadd 10007 xleaddadd 10011 iccshftr 10118 iccshftl 10120 iccdil 10122 icccntr 10124 fzaddel 10183 elfzomelpfzo 10362 xqltnle 10412 nnesq 10806 hashnncl 10942 zfz1isolemiso 10986 swrdspsleq 11123 mod2eq1n2dvds 12223 m1exp1 12245 dfgcd3 12364 dvdssq 12385 pcdvdsb 12676 pceq0 12678 issubg3 13561 lmss 14751 lmres 14753 2omap 15969 |
| Copyright terms: Public domain | W3C validator |