Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2thd | Unicode version |
Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
Ref | Expression |
---|---|
2thd.1 | |
2thd.2 |
Ref | Expression |
---|---|
2thd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 | |
2 | 2thd.2 | . 2 | |
3 | pm5.1im 172 | . 2 | |
4 | 1, 2, 3 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biort 819 rspcime 2837 abvor0dc 3432 exmidsssn 4181 euotd 4232 nn0eln0 4597 elabrex 5726 riota5f 5822 nntri3 6465 fin0 6851 omp1eomlem 7059 ctssdccl 7076 ismkvnex 7119 nn1m1nn 8875 xrlttri3 9733 nltpnft 9750 ngtmnft 9753 xrrebnd 9755 xltadd1 9812 xsubge0 9817 xposdif 9818 xlesubadd 9819 xleaddadd 9823 iccshftr 9930 iccshftl 9932 iccdil 9934 icccntr 9936 fzaddel 9994 elfzomelpfzo 10166 nnesq 10574 hashnncl 10709 zfz1isolemiso 10752 mod2eq1n2dvds 11816 m1exp1 11838 dfgcd3 11943 dvdssq 11964 pcdvdsb 12251 pceq0 12253 lmss 12886 lmres 12888 |
Copyright terms: Public domain | W3C validator |