Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2thd | Unicode version |
Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
Ref | Expression |
---|---|
2thd.1 | |
2thd.2 |
Ref | Expression |
---|---|
2thd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 | |
2 | 2thd.2 | . 2 | |
3 | pm5.1im 172 | . 2 | |
4 | 1, 2, 3 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biort 824 rspcime 2841 abvor0dc 3438 exmidsssn 4188 euotd 4239 nn0eln0 4604 elabrex 5737 riota5f 5833 nntri3 6476 fin0 6863 omp1eomlem 7071 ctssdccl 7088 ismkvnex 7131 nn1m1nn 8896 xrlttri3 9754 nltpnft 9771 ngtmnft 9774 xrrebnd 9776 xltadd1 9833 xsubge0 9838 xposdif 9839 xlesubadd 9840 xleaddadd 9844 iccshftr 9951 iccshftl 9953 iccdil 9955 icccntr 9957 fzaddel 10015 elfzomelpfzo 10187 nnesq 10595 hashnncl 10730 zfz1isolemiso 10774 mod2eq1n2dvds 11838 m1exp1 11860 dfgcd3 11965 dvdssq 11986 pcdvdsb 12273 pceq0 12275 lmss 13040 lmres 13042 |
Copyright terms: Public domain | W3C validator |