| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2thd | Unicode version | ||
| Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| 2thd.1 | 
 | 
| 2thd.2 | 
 | 
| Ref | Expression | 
|---|---|
| 2thd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2thd.1 | 
. 2
 | |
| 2 | 2thd.2 | 
. 2
 | |
| 3 | pm5.1im 173 | 
. 2
 | |
| 4 | 1, 2, 3 | sylc 62 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: biort 830 rspcime 2875 abvor0dc 3474 exmidsssn 4235 euotd 4287 nn0eln0 4656 elabrex 5804 elabrexg 5805 riota5f 5902 nntri3 6555 fin0 6946 omp1eomlem 7160 ctssdccl 7177 ismkvnex 7221 nn1m1nn 9008 xrlttri3 9872 nltpnft 9889 ngtmnft 9892 xrrebnd 9894 xltadd1 9951 xsubge0 9956 xposdif 9957 xlesubadd 9958 xleaddadd 9962 iccshftr 10069 iccshftl 10071 iccdil 10073 icccntr 10075 fzaddel 10134 elfzomelpfzo 10307 xqltnle 10357 nnesq 10751 hashnncl 10887 zfz1isolemiso 10931 mod2eq1n2dvds 12044 m1exp1 12066 dfgcd3 12177 dvdssq 12198 pcdvdsb 12489 pceq0 12491 issubg3 13322 lmss 14482 lmres 14484 | 
| Copyright terms: Public domain | W3C validator |