Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nfalt Unicode version

Theorem bj-nfalt 13645
Description: Closed form of nfal 1564 (copied from set.mm). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfalt  |-  ( A. x F/ y ph  ->  F/ y A. x ph )

Proof of Theorem bj-nfalt
StepHypRef Expression
1 bj-hbalt 13644 . . . 4  |-  ( A. x ( ph  ->  A. y ph )  -> 
( A. x ph  ->  A. y A. x ph ) )
21alimi 1443 . . 3  |-  ( A. y A. x ( ph  ->  A. y ph )  ->  A. y ( A. x ph  ->  A. y A. x ph ) )
32alcoms 1464 . 2  |-  ( A. x A. y ( ph  ->  A. y ph )  ->  A. y ( A. x ph  ->  A. y A. x ph ) )
4 df-nf 1449 . . 3  |-  ( F/ y ph  <->  A. y
( ph  ->  A. y ph ) )
54albii 1458 . 2  |-  ( A. x F/ y ph  <->  A. x A. y ( ph  ->  A. y ph ) )
6 df-nf 1449 . 2  |-  ( F/ y A. x ph  <->  A. y ( A. x ph  ->  A. y A. x ph ) )
73, 5, 63imtr4i 200 1  |-  ( A. x F/ y ph  ->  F/ y A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator