Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nfalt | GIF version |
Description: Closed form of nfal 1564 (copied from set.mm). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nfalt | ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-hbalt 13644 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) | |
2 | 1 | alimi 1443 | . . 3 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑦𝜑) → ∀𝑦(∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) |
3 | 2 | alcoms 1464 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑) → ∀𝑦(∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) |
4 | df-nf 1449 | . . 3 ⊢ (Ⅎ𝑦𝜑 ↔ ∀𝑦(𝜑 → ∀𝑦𝜑)) | |
5 | 4 | albii 1458 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 ↔ ∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑)) |
6 | df-nf 1449 | . 2 ⊢ (Ⅎ𝑦∀𝑥𝜑 ↔ ∀𝑦(∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) | |
7 | 3, 5, 6 | 3imtr4i 200 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |