| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alimi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| alimi.1 |
|
| Ref | Expression |
|---|---|
| alimi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1493 |
. 2
| |
| 2 | alimi.1 |
. 2
| |
| 3 | 1, 2 | mpg 1497 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-5 1493 ax-gen 1495 |
| This theorem is referenced by: 2alimi 1502 al2imi 1504 alrimih 1515 hbal 1523 19.26 1527 19.33 1530 hbequid 1559 equidqe 1578 hbim 1591 hbor 1592 nford 1613 nfand 1614 nfal 1622 nfalt 1624 19.21ht 1627 exbi 1650 19.29 1666 19.25 1672 alexim 1691 alexnim 1694 19.9hd 1708 19.32r 1726 ax10 1763 spimh 1783 equvini 1804 nfexd 1807 stdpc4 1821 ax10oe 1843 sbcof2 1856 sb4bor 1881 nfsb2or 1883 spsbim 1889 ax16i 1904 sbi2v 1939 nfsbt 2027 nfsbd 2028 sbalyz 2050 hbsb4t 2064 dvelimor 2069 sbal2 2071 mo2n 2105 eumo0 2108 mor 2120 bm1.1 2214 alral 2575 rgen2a 2584 ralimi2 2590 rexim 2624 r19.32r 2677 ceqsalt 2826 spcgft 2880 spcegft 2882 spc2gv 2894 spc3gv 2896 rspct 2900 elabgt 2944 reu6 2992 sbciegft 3059 csbeq2 3148 csbnestgf 3177 ssrmof 3287 rabss2 3307 rabxmdc 3523 undif4 3554 ssdif0im 3556 inssdif0im 3559 ssundifim 3575 ralf0 3594 ralm 3595 intmin4 3950 dfiin2g 3997 invdisj 4075 trint 4196 a9evsep 4205 axnul 4208 csbexga 4211 exmidn0m 4284 exmidsssn 4285 exmidsssnc 4286 exmid0el 4287 ordunisuc2r 4605 tfi 4673 peano5 4689 ssrelrel 4818 issref 5110 iotanul 5293 iota4 5297 dffun5r 5329 fundif 5364 fv3 5649 mptfvex 5719 ssoprab2 6059 mpofvex 6349 tfri1dALT 6495 prodeq2w 12062 bj-nfalt 16086 elabgft1 16100 bj-rspgt 16108 bj-axemptylem 16213 bj-indind 16253 setindis 16288 bdsetindis 16290 bj-inf2vnlem1 16291 bj-inf2vn 16295 bj-inf2vn2 16296 |
| Copyright terms: Public domain | W3C validator |