| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alimi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| alimi.1 |
|
| Ref | Expression |
|---|---|
| alimi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1469 |
. 2
| |
| 2 | alimi.1 |
. 2
| |
| 3 | 1, 2 | mpg 1473 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-5 1469 ax-gen 1471 |
| This theorem is referenced by: 2alimi 1478 al2imi 1480 alrimih 1491 hbal 1499 19.26 1503 19.33 1506 hbequid 1535 equidqe 1554 hbim 1567 hbor 1568 nford 1589 nfand 1590 nfal 1598 nfalt 1600 19.21ht 1603 exbi 1626 19.29 1642 19.25 1648 alexim 1667 alexnim 1670 19.9hd 1684 19.32r 1702 ax10 1739 spimh 1759 equvini 1780 nfexd 1783 stdpc4 1797 ax10oe 1819 sbcof2 1832 sb4bor 1857 nfsb2or 1859 spsbim 1865 ax16i 1880 sbi2v 1915 nfsbt 2003 nfsbd 2004 sbalyz 2026 hbsb4t 2040 dvelimor 2045 sbal2 2047 mo2n 2081 eumo0 2084 mor 2095 bm1.1 2189 alral 2550 rgen2a 2559 ralimi2 2565 rexim 2599 r19.32r 2651 ceqsalt 2797 spcgft 2849 spcegft 2851 spc2gv 2863 spc3gv 2865 rspct 2869 elabgt 2913 reu6 2961 sbciegft 3028 csbeq2 3116 csbnestgf 3145 ssrmof 3255 rabss2 3275 rabxmdc 3491 undif4 3522 ssdif0im 3524 inssdif0im 3527 ssundifim 3543 ralf0 3562 ralm 3563 intmin4 3912 dfiin2g 3959 invdisj 4037 trint 4156 a9evsep 4165 axnul 4168 csbexga 4171 exmidn0m 4244 exmidsssn 4245 exmidsssnc 4246 exmid0el 4247 ordunisuc2r 4561 tfi 4629 peano5 4645 ssrelrel 4774 issref 5064 iotanul 5246 iota4 5250 dffun5r 5282 fundif 5317 fv3 5598 mptfvex 5664 ssoprab2 6000 mpofvex 6290 tfri1dALT 6436 prodeq2w 11838 bj-nfalt 15662 elabgft1 15676 bj-rspgt 15684 bj-axemptylem 15790 bj-indind 15830 setindis 15865 bdsetindis 15867 bj-inf2vnlem1 15868 bj-inf2vn 15872 bj-inf2vn2 15873 |
| Copyright terms: Public domain | W3C validator |