![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alimi | Unicode version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alimi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
alimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1382 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | alimi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1386 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 7 ax-5 1382 ax-gen 1384 |
This theorem is referenced by: 2alimi 1391 al2imi 1393 alrimih 1404 hbal 1412 19.26 1416 19.33 1419 hbequid 1452 equidqe 1471 hbim 1483 hbor 1484 nford 1505 nfand 1506 nfalt 1516 19.21ht 1519 exbi 1541 19.29 1557 19.25 1563 alexim 1582 alexnim 1585 19.9hd 1598 19.32r 1616 ax10 1653 spimh 1673 equvini 1689 nfexd 1692 stdpc4 1706 ax10oe 1726 sbcof2 1739 sb4bor 1764 nfsb2or 1766 spsbim 1772 ax16i 1787 sbi2v 1821 nfsbt 1899 nfsbd 1900 sbalyz 1924 hbsb4t 1938 dvelimor 1943 sbal2 1947 mo2n 1977 eumo0 1980 mor 1991 bm1.1 2074 alral 2422 rgen2a 2430 ralimi2 2436 rexim 2468 r19.32r 2515 ceqsalt 2646 spcgft 2697 spcegft 2699 spc2gv 2710 spc3gv 2712 rspct 2716 elabgt 2758 reu6 2805 sbciegft 2870 csbnestgf 2981 rabss2 3105 rabxmdc 3318 undif4 3349 ssdif0im 3351 inssdif0im 3354 ssundifim 3370 ralf0 3389 ralm 3390 intmin4 3722 dfiin2g 3769 invdisj 3845 trint 3957 a9evsep 3967 axnul 3970 csbexga 3973 exmidn0m 4039 exmidsssn 4040 exmid0el 4041 ordunisuc2r 4344 tfi 4410 peano5 4426 ssrelrel 4551 issref 4827 iotanul 5008 iota4 5011 dffun5r 5040 fv3 5341 mptfvex 5401 ssoprab2 5719 mpt2fvex 5987 tfri1dALT 6130 bj-nfalt 11931 elabgft1 11944 bj-rspgt 11952 bj-axemptylem 12049 bj-indind 12093 setindis 12128 bdsetindis 12130 bj-inf2vnlem1 12131 bj-inf2vn 12135 bj-inf2vn2 12136 |
Copyright terms: Public domain | W3C validator |