![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alimi | Unicode version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alimi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
alimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1447 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | alimi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1451 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-5 1447 ax-gen 1449 |
This theorem is referenced by: 2alimi 1456 al2imi 1458 alrimih 1469 hbal 1477 19.26 1481 19.33 1484 hbequid 1513 equidqe 1532 hbim 1545 hbor 1546 nford 1567 nfand 1568 nfal 1576 nfalt 1578 19.21ht 1581 exbi 1604 19.29 1620 19.25 1626 alexim 1645 alexnim 1648 19.9hd 1662 19.32r 1680 ax10 1717 spimh 1737 equvini 1758 nfexd 1761 stdpc4 1775 ax10oe 1797 sbcof2 1810 sb4bor 1835 nfsb2or 1837 spsbim 1843 ax16i 1858 sbi2v 1892 nfsbt 1976 nfsbd 1977 sbalyz 1999 hbsb4t 2013 dvelimor 2018 sbal2 2020 mo2n 2054 eumo0 2057 mor 2068 bm1.1 2162 alral 2522 rgen2a 2531 ralimi2 2537 rexim 2571 r19.32r 2623 ceqsalt 2764 spcgft 2815 spcegft 2817 spc2gv 2829 spc3gv 2831 rspct 2835 elabgt 2879 reu6 2927 sbciegft 2994 csbeq2 3082 csbnestgf 3110 ssrmof 3219 rabss2 3239 rabxmdc 3455 undif4 3486 ssdif0im 3488 inssdif0im 3491 ssundifim 3507 ralf0 3527 ralm 3528 intmin4 3873 dfiin2g 3920 invdisj 3998 trint 4117 a9evsep 4126 axnul 4129 csbexga 4132 exmidn0m 4202 exmidsssn 4203 exmidsssnc 4204 exmid0el 4205 ordunisuc2r 4514 tfi 4582 peano5 4598 ssrelrel 4727 issref 5012 iotanul 5194 iota4 5197 dffun5r 5229 fv3 5539 mptfvex 5602 ssoprab2 5931 mpofvex 6204 tfri1dALT 6352 prodeq2w 11564 bj-nfalt 14519 elabgft1 14533 bj-rspgt 14541 bj-axemptylem 14647 bj-indind 14687 setindis 14722 bdsetindis 14724 bj-inf2vnlem1 14725 bj-inf2vn 14729 bj-inf2vn2 14730 |
Copyright terms: Public domain | W3C validator |