![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alimi | Unicode version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alimi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
alimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1458 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | alimi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1462 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-5 1458 ax-gen 1460 |
This theorem is referenced by: 2alimi 1467 al2imi 1469 alrimih 1480 hbal 1488 19.26 1492 19.33 1495 hbequid 1524 equidqe 1543 hbim 1556 hbor 1557 nford 1578 nfand 1579 nfal 1587 nfalt 1589 19.21ht 1592 exbi 1615 19.29 1631 19.25 1637 alexim 1656 alexnim 1659 19.9hd 1673 19.32r 1691 ax10 1728 spimh 1748 equvini 1769 nfexd 1772 stdpc4 1786 ax10oe 1808 sbcof2 1821 sb4bor 1846 nfsb2or 1848 spsbim 1854 ax16i 1869 sbi2v 1904 nfsbt 1992 nfsbd 1993 sbalyz 2015 hbsb4t 2029 dvelimor 2034 sbal2 2036 mo2n 2070 eumo0 2073 mor 2084 bm1.1 2178 alral 2539 rgen2a 2548 ralimi2 2554 rexim 2588 r19.32r 2640 ceqsalt 2786 spcgft 2838 spcegft 2840 spc2gv 2852 spc3gv 2854 rspct 2858 elabgt 2902 reu6 2950 sbciegft 3017 csbeq2 3105 csbnestgf 3134 ssrmof 3243 rabss2 3263 rabxmdc 3479 undif4 3510 ssdif0im 3512 inssdif0im 3515 ssundifim 3531 ralf0 3550 ralm 3551 intmin4 3899 dfiin2g 3946 invdisj 4024 trint 4143 a9evsep 4152 axnul 4155 csbexga 4158 exmidn0m 4231 exmidsssn 4232 exmidsssnc 4233 exmid0el 4234 ordunisuc2r 4547 tfi 4615 peano5 4631 ssrelrel 4760 issref 5049 iotanul 5231 iota4 5235 dffun5r 5267 fv3 5578 mptfvex 5644 ssoprab2 5975 mpofvex 6260 tfri1dALT 6406 prodeq2w 11702 bj-nfalt 15326 elabgft1 15340 bj-rspgt 15348 bj-axemptylem 15454 bj-indind 15494 setindis 15529 bdsetindis 15531 bj-inf2vnlem1 15532 bj-inf2vn 15536 bj-inf2vn2 15537 |
Copyright terms: Public domain | W3C validator |