| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alimi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| alimi.1 |
|
| Ref | Expression |
|---|---|
| alimi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1471 |
. 2
| |
| 2 | alimi.1 |
. 2
| |
| 3 | 1, 2 | mpg 1475 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-5 1471 ax-gen 1473 |
| This theorem is referenced by: 2alimi 1480 al2imi 1482 alrimih 1493 hbal 1501 19.26 1505 19.33 1508 hbequid 1537 equidqe 1556 hbim 1569 hbor 1570 nford 1591 nfand 1592 nfal 1600 nfalt 1602 19.21ht 1605 exbi 1628 19.29 1644 19.25 1650 alexim 1669 alexnim 1672 19.9hd 1686 19.32r 1704 ax10 1741 spimh 1761 equvini 1782 nfexd 1785 stdpc4 1799 ax10oe 1821 sbcof2 1834 sb4bor 1859 nfsb2or 1861 spsbim 1867 ax16i 1882 sbi2v 1917 nfsbt 2005 nfsbd 2006 sbalyz 2028 hbsb4t 2042 dvelimor 2047 sbal2 2049 mo2n 2083 eumo0 2086 mor 2098 bm1.1 2192 alral 2553 rgen2a 2562 ralimi2 2568 rexim 2602 r19.32r 2654 ceqsalt 2803 spcgft 2857 spcegft 2859 spc2gv 2871 spc3gv 2873 rspct 2877 elabgt 2921 reu6 2969 sbciegft 3036 csbeq2 3125 csbnestgf 3154 ssrmof 3264 rabss2 3284 rabxmdc 3500 undif4 3531 ssdif0im 3533 inssdif0im 3536 ssundifim 3552 ralf0 3571 ralm 3572 intmin4 3927 dfiin2g 3974 invdisj 4052 trint 4173 a9evsep 4182 axnul 4185 csbexga 4188 exmidn0m 4261 exmidsssn 4262 exmidsssnc 4263 exmid0el 4264 ordunisuc2r 4580 tfi 4648 peano5 4664 ssrelrel 4793 issref 5084 iotanul 5266 iota4 5270 dffun5r 5302 fundif 5337 fv3 5622 mptfvex 5688 ssoprab2 6024 mpofvex 6314 tfri1dALT 6460 prodeq2w 11982 bj-nfalt 15900 elabgft1 15914 bj-rspgt 15922 bj-axemptylem 16027 bj-indind 16067 setindis 16102 bdsetindis 16104 bj-inf2vnlem1 16105 bj-inf2vn 16109 bj-inf2vn2 16110 |
| Copyright terms: Public domain | W3C validator |