ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfal Unicode version

Theorem nfal 1587
Description: If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1521. (Revised by GG, 25-Aug-2024.)
Hypothesis
Ref Expression
nfal.1  |-  F/ x ph
Assertion
Ref Expression
nfal  |-  F/ x A. y ph

Proof of Theorem nfal
StepHypRef Expression
1 df-nf 1472 . . . . . 6  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
21biimpi 120 . . . . 5  |-  ( F/ x ph  ->  A. x
( ph  ->  A. x ph ) )
32alimi 1466 . . . 4  |-  ( A. y F/ x ph  ->  A. y A. x (
ph  ->  A. x ph )
)
4 ax-7 1459 . . . 4  |-  ( A. y A. x ( ph  ->  A. x ph )  ->  A. x A. y
( ph  ->  A. x ph ) )
5 ax-5 1458 . . . . . 6  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. y A. x ph ) )
6 ax-7 1459 . . . . . 6  |-  ( A. y A. x ph  ->  A. x A. y ph )
75, 6syl6 33 . . . . 5  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. x A. y ph ) )
87alimi 1466 . . . 4  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. x ( A. y ph  ->  A. x A. y ph ) )
93, 4, 83syl 17 . . 3  |-  ( A. y F/ x ph  ->  A. x ( A. y ph  ->  A. x A. y ph ) )
10 df-nf 1472 . . 3  |-  ( F/ x A. y ph  <->  A. x ( A. y ph  ->  A. x A. y ph ) )
119, 10sylibr 134 . 2  |-  ( A. y F/ x ph  ->  F/ x A. y ph )
12 nfal.1 . 2  |-  F/ x ph
1311, 12mpg 1462 1  |-  F/ x A. y ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   F/wnf 1471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  nfnf  1588  nfa2  1590  aaan  1598  cbv3  1753  cbv2  1760  nfald  1771  cbval2  1933  nfsb4t  2030  nfeuv  2060  mo23  2083  bm1.1  2178  nfnfc1  2339  nfnfc  2343  nfeq  2344  nfabdw  2355  sbcnestgf  3132  dfnfc2  3853  nfdisjv  4018  nfdisj1  4019  nffr  4380  uchoice  6190  exmidfodomrlemr  7262  exmidfodomrlemrALT  7263  exmidunben  12583  bdsepnft  15379  bdsepnfALT  15381  setindft  15457  strcollnft  15476  pw1nct  15493
  Copyright terms: Public domain W3C validator