ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfal Unicode version

Theorem nfal 1569
Description: If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1503. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
nfal.1  |-  F/ x ph
Assertion
Ref Expression
nfal  |-  F/ x A. y ph

Proof of Theorem nfal
StepHypRef Expression
1 df-nf 1454 . . . . . 6  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
21biimpi 119 . . . . 5  |-  ( F/ x ph  ->  A. x
( ph  ->  A. x ph ) )
32alimi 1448 . . . 4  |-  ( A. y F/ x ph  ->  A. y A. x (
ph  ->  A. x ph )
)
4 ax-7 1441 . . . 4  |-  ( A. y A. x ( ph  ->  A. x ph )  ->  A. x A. y
( ph  ->  A. x ph ) )
5 ax-5 1440 . . . . . 6  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. y A. x ph ) )
6 ax-7 1441 . . . . . 6  |-  ( A. y A. x ph  ->  A. x A. y ph )
75, 6syl6 33 . . . . 5  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. x A. y ph ) )
87alimi 1448 . . . 4  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. x ( A. y ph  ->  A. x A. y ph ) )
93, 4, 83syl 17 . . 3  |-  ( A. y F/ x ph  ->  A. x ( A. y ph  ->  A. x A. y ph ) )
10 df-nf 1454 . . 3  |-  ( F/ x A. y ph  <->  A. x ( A. y ph  ->  A. x A. y ph ) )
119, 10sylibr 133 . 2  |-  ( A. y F/ x ph  ->  F/ x A. y ph )
12 nfal.1 . 2  |-  F/ x ph
1311, 12mpg 1444 1  |-  F/ x A. y ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nfnf  1570  nfa2  1572  aaan  1580  cbv3  1735  cbv2  1742  nfald  1753  cbval2  1914  nfsb4t  2007  nfeuv  2037  mo23  2060  bm1.1  2155  nfnfc1  2315  nfnfc  2319  nfeq  2320  nfabdw  2331  sbcnestgf  3100  dfnfc2  3814  nfdisjv  3978  nfdisj1  3979  nffr  4334  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180  exmidunben  12381  bdsepnft  13922  bdsepnfALT  13924  setindft  14000  strcollnft  14019  pw1nct  14036
  Copyright terms: Public domain W3C validator