Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnor Unicode version

Theorem bj-nnor 13615
Description: Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
bj-nnor  |-  ( -. 
-.  ( ph  \/  ps )  <->  ( -.  ph  ->  -.  -.  ps )
)

Proof of Theorem bj-nnor
StepHypRef Expression
1 ioran 742 . . 3  |-  ( -.  ( ph  \/  ps ) 
<->  ( -.  ph  /\  -.  ps ) )
21notbii 658 . 2  |-  ( -. 
-.  ( ph  \/  ps )  <->  -.  ( -.  ph 
/\  -.  ps )
)
3 imnan 680 . 2  |-  ( ( -.  ph  ->  -.  -.  ps )  <->  -.  ( -.  ph 
/\  -.  ps )
)
42, 3bitr4i 186 1  |-  ( -. 
-.  ( ph  \/  ps )  <->  ( -.  ph  ->  -.  -.  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bj-nndcALT  13639
  Copyright terms: Public domain W3C validator