ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbval2v Unicode version

Theorem cbval2v 1916
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)
Hypothesis
Ref Expression
cbval2v.1  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
cbval2v  |-  ( A. x A. y ph  <->  A. z A. w ps )
Distinct variable groups:    z, w, ph    x, y, ps    x, w    y, z
Allowed substitution hints:    ph( x, y)    ps( z, w)

Proof of Theorem cbval2v
StepHypRef Expression
1 nfv 1521 . 2  |-  F/ z
ph
2 nfv 1521 . 2  |-  F/ w ph
3 nfv 1521 . 2  |-  F/ x ps
4 nfv 1521 . 2  |-  F/ y ps
5 cbval2v.1 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph  <->  ps )
)
61, 2, 3, 4, 5cbval2 1914 1  |-  ( A. x A. y ph  <->  A. z A. w ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator