ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbval2 Unicode version

Theorem cbval2 1909
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Apr-2018.)
Hypotheses
Ref Expression
cbval2.1  |-  F/ z
ph
cbval2.2  |-  F/ w ph
cbval2.3  |-  F/ x ps
cbval2.4  |-  F/ y ps
cbval2.5  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
cbval2  |-  ( A. x A. y ph  <->  A. z A. w ps )
Distinct variable groups:    x, y    y,
z    x, w    z, w
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z, w)

Proof of Theorem cbval2
StepHypRef Expression
1 cbval2.1 . . 3  |-  F/ z
ph
21nfal 1564 . 2  |-  F/ z A. y ph
3 cbval2.3 . . 3  |-  F/ x ps
43nfal 1564 . 2  |-  F/ x A. w ps
5 nfv 1516 . . . . . 6  |-  F/ w  x  =  z
6 cbval2.2 . . . . . 6  |-  F/ w ph
75, 6nfim 1560 . . . . 5  |-  F/ w
( x  =  z  ->  ph )
8 nfv 1516 . . . . . 6  |-  F/ y  x  =  z
9 cbval2.4 . . . . . 6  |-  F/ y ps
108, 9nfim 1560 . . . . 5  |-  F/ y ( x  =  z  ->  ps )
11 cbval2.5 . . . . . . 7  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph  <->  ps )
)
1211expcom 115 . . . . . 6  |-  ( y  =  w  ->  (
x  =  z  -> 
( ph  <->  ps ) ) )
1312pm5.74d 181 . . . . 5  |-  ( y  =  w  ->  (
( x  =  z  ->  ph )  <->  ( x  =  z  ->  ps )
) )
147, 10, 13cbval 1742 . . . 4  |-  ( A. y ( x  =  z  ->  ph )  <->  A. w
( x  =  z  ->  ps ) )
15 19.21v 1861 . . . 4  |-  ( A. y ( x  =  z  ->  ph )  <->  ( x  =  z  ->  A. y ph ) )
16 19.21v 1861 . . . 4  |-  ( A. w ( x  =  z  ->  ps )  <->  ( x  =  z  ->  A. w ps ) )
1714, 15, 163bitr3i 209 . . 3  |-  ( ( x  =  z  ->  A. y ph )  <->  ( x  =  z  ->  A. w ps ) )
1817pm5.74ri 180 . 2  |-  ( x  =  z  ->  ( A. y ph  <->  A. w ps ) )
192, 4, 18cbval 1742 1  |-  ( A. x A. y ph  <->  A. z A. w ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  cbval2v  1911
  Copyright terms: Public domain W3C validator