HomeHome Intuitionistic Logic Explorer
Theorem List (p. 20 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1901-2000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremchvarvv 1901* Version of chvarv 1930 with a disjoint variable condition. (Contributed by BJ, 31-May-2019.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremexdistr 1902* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
 |-  ( E. x E. y ( ph  /\  ps ) 
 <-> 
 E. x ( ph  /\ 
 E. y ps )
 )
 
Theoremexdistrv 1903* Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1895 and 19.42v 1899. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 1925. (Contributed by BJ, 30-Sep-2022.)
 |-  ( E. x E. y ( ph  /\  ps ) 
 <->  ( E. x ph  /\ 
 E. y ps )
 )
 
Theorem19.42vv 1904* Theorem 19.42 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 16-Mar-1995.)
 |-  ( E. x E. y ( ph  /\  ps ) 
 <->  ( ph  /\  E. x E. y ps )
 )
 
Theorem19.42vvv 1905* Theorem 19.42 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 21-Sep-2011.)
 |-  ( E. x E. y E. z ( ph  /\ 
 ps )  <->  ( ph  /\  E. x E. y E. z ps ) )
 
Theorem19.42vvvv 1906* Theorem 19.42 of [Margaris] p. 90 with 4 quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
 |-  ( E. w E. x E. y E. z
 ( ph  /\  ps )  <->  (
 ph  /\  E. w E. x E. y E. z ps ) )
 
Theoremexdistr2 1907* Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)
 |-  ( E. x E. y E. z ( ph  /\ 
 ps )  <->  E. x ( ph  /\ 
 E. y E. z ps ) )
 
Theorem3exdistr 1908* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( E. x E. y E. z ( ph  /\ 
 ps  /\  ch )  <->  E. x ( ph  /\  E. y ( ps  /\  E. z ch ) ) )
 
Theorem4exdistr 1909* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
 |-  ( E. x E. y E. z E. w ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  E. x ( ph  /\ 
 E. y ( ps 
 /\  E. z ( ch 
 /\  E. w th )
 ) ) )
 
Theoremcbvalv 1910* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
Theoremcbvexv 1911* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
Theoremcbvalvw 1912* Change bound variable. See cbvalv 1910 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1441. (Revised by Gino Giotto, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
Theoremcbvexvw 1913* Change bound variable. See cbvexv 1911 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1441. (Revised by Gino Giotto, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
Theoremcbval2 1914* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Apr-2018.)
 |- 
 F/ z ph   &    |-  F/ w ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x A. y ph  <->  A. z A. w ps )
 
Theoremcbvex2 1915* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ z ph   &    |-  F/ w ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x E. y ph  <->  E. z E. w ps )
 
Theoremcbval2v 1916* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x A. y ph  <->  A. z A. w ps )
 
Theoremcbvex2v 1917* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x E. y ph  <->  E. z E. w ps )
 
Theoremcbvald 1918* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2010. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
Theoremcbvexdh 1919* Deduction used to change bound variables, using implicit substitition, particularly useful in conjunction with dvelim 2010. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 30-Dec-2017.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ph  ->  ( ps  ->  A. y ps ) )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. y ch )
 )
 
Theoremcbvexd 1920* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2010. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. y ch )
 )
 
Theoremcbvaldva 1921* Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
Theoremcbvexdva 1922* Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. y ch )
 )
 
Theoremcbvex4v 1923* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.)
 |-  ( ( x  =  v  /\  y  =  u )  ->  ( ph 
 <->  ps ) )   &    |-  (
 ( z  =  f 
 /\  w  =  g )  ->  ( ps  <->  ch ) )   =>    |-  ( E. x E. y E. z E. w ph  <->  E. v E. u E. f E. g ch )
 
Theoremeean 1924 Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( E. x E. y (
 ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )
 
Theoremeeanv 1925* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.)
 |-  ( E. x E. y ( ph  /\  ps ) 
 <->  ( E. x ph  /\ 
 E. y ps )
 )
 
Theoremeeeanv 1926* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( E. x E. y E. z ( ph  /\ 
 ps  /\  ch )  <->  ( E. x ph  /\  E. y ps  /\  E. z ch ) )
 
Theoremee4anv 1927* Rearrange existential quantifiers. (Contributed by NM, 31-Jul-1995.)
 |-  ( E. x E. y E. z E. w ( ph  /\  ps )  <->  ( E. x E. y ph  /\  E. z E. w ps ) )
 
Theoremee8anv 1928* Rearrange existential quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
 |-  ( E. x E. y E. z E. w E. v E. u E. t E. s ( ph  /\ 
 ps )  <->  ( E. x E. y E. z E. w ph  /\  E. v E. u E. t E. s ps ) )
 
Theoremnexdv 1929* Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  -.  E. x ps )
 
Theoremchvarv 1930* Implicit substitution of  y for  x into a theorem. (Contributed by NM, 20-Apr-1994.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
1.4.5  More substitution theorems
 
Theoremhbs1 1931*  x is not free in  [ y  /  x ] ph when  x and  y are distinct. (Contributed by NM, 5-Aug-1993.) (Proof by Jim Kingdon, 16-Dec-2017.) (New usage is discouraged.)
 |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
 
Theoremnfs1v 1932*  x is not free in  [ y  /  x ] ph when  x and  y are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x [ y  /  x ] ph
 
Theoremsbhb 1933* Two ways of expressing " x is (effectively) not free in  ph." (Contributed by NM, 29-May-2009.)
 |-  ( ( ph  ->  A. x ph )  <->  A. y ( ph  ->  [ y  /  x ] ph ) )
 
Theoremhbsbv 1934* This is a version of hbsb 1942 with an extra distinct variable constraint, on  z and  x. (Contributed by Jim Kingdon, 25-Dec-2017.)
 |-  ( ph  ->  A. z ph )   =>    |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
 
Theoremnfsbxy 1935* Similar to hbsb 1942 but with an extra distinct variable constraint, on  x and  y. (Contributed by Jim Kingdon, 19-Mar-2018.)
 |- 
 F/ z ph   =>    |- 
 F/ z [ y  /  x ] ph
 
Theoremnfsbxyt 1936* Closed form of nfsbxy 1935. (Contributed by Jim Kingdon, 9-May-2018.)
 |-  ( A. x F/ z ph  ->  F/ z [ y  /  x ] ph )
 
Theoremsbco2vlem 1937* This is a version of sbco2 1958 where  z is distinct from 
x and from  y. It is a lemma on the way to proving sbco2v 1941 which only requires that  z and  x be distinct. (Contributed by Jim Kingdon, 25-Dec-2017.) Remove one disjoint variable condition. (Revised by Jim Kingdon, 3-Feb-2018.)
 |-  ( ph  ->  A. z ph )   =>    |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
 
Theoremsbco2vh 1938* This is a version of sbco2 1958 where  z is distinct from 
x. (Contributed by Jim Kingdon, 12-Feb-2018.)
 |-  ( ph  ->  A. z ph )   =>    |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
 
Theoremnfsb 1939* If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  y and  z are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
 |- 
 F/ z ph   =>    |- 
 F/ z [ y  /  x ] ph
 
Theoremnfsbv 1940* If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  z is distinct from  x and  y. Version of nfsb 1939 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on  x ,  y. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
 |- 
 F/ z ph   =>    |- 
 F/ z [ y  /  x ] ph
 
Theoremsbco2v 1941* Version of sbco2 1958 with disjoint variable conditions. (Contributed by Wolf Lammen, 29-Apr-2023.)
 |- 
 F/ z ph   =>    |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
 
Theoremhbsb 1942* If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  y and  z are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
 |-  ( ph  ->  A. z ph )   =>    |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
 
Theoremequsb3lem 1943* Lemma for equsb3 1944. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( [ y  /  x ] x  =  z  <-> 
 y  =  z )
 
Theoremequsb3 1944* Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)
 |-  ( [ y  /  x ] x  =  z  <-> 
 y  =  z )
 
Theoremsbn 1945 Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
 |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
 
Theoremsbim 1946 Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
 |-  ( [ y  /  x ] ( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )
 
Theoremsbor 1947 Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
 |-  ( [ y  /  x ] ( ph  \/  ps )  <->  ( [ y  /  x ] ph  \/  [ y  /  x ] ps ) )
 
Theoremsban 1948 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
 |-  ( [ y  /  x ] ( ph  /\  ps ) 
 <->  ( [ y  /  x ] ph  /\  [
 y  /  x ] ps ) )
 
Theoremsbrim 1949 Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( [ y  /  x ] ( ph  ->  ps )  <->  ( ph  ->  [ y  /  x ] ps ) )
 
Theoremsblim 1950 Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ps   =>    |-  ( [ y  /  x ] ( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  ps ) )
 
Theoremsb3an 1951 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
 |-  ( [ y  /  x ] ( ph  /\  ps  /\ 
 ch )  <->  ( [ y  /  x ] ph  /\  [
 y  /  x ] ps  /\  [ y  /  x ] ch ) )
 
Theoremsbbi 1952 Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
 |-  ( [ y  /  x ] ( ph  <->  ps )  <->  ( [ y  /  x ] ph  <->  [ y  /  x ] ps ) )
 
Theoremsblbis 1953 Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
 |-  ( [ y  /  x ] ph  <->  ps )   =>    |-  ( [ y  /  x ] ( ch  <->  ph )  <->  ( [ y  /  x ] ch  <->  ps ) )
 
Theoremsbrbis 1954 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
 |-  ( [ y  /  x ] ph  <->  ps )   =>    |-  ( [ y  /  x ] ( ph  <->  ch )  <->  ( ps  <->  [ y  /  x ] ch ) )
 
Theoremsbrbif 1955 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
 |-  ( ch  ->  A. x ch )   &    |-  ( [ y  /  x ] ph  <->  ps )   =>    |-  ( [ y  /  x ] ( ph  <->  ch )  <->  ( ps  <->  ch ) )
 
Theoremsbco2yz 1956* This is a version of sbco2 1958 where  z is distinct from 
y. It is a lemma on the way to proving sbco2 1958 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
 |- 
 F/ z ph   =>    |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
 
Theoremsbco2h 1957 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
 |-  ( ph  ->  A. z ph )   =>    |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
 
Theoremsbco2 1958 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ z ph   =>    |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
 
Theoremsbco2d 1959 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  A. z ph )   &    |-  ( ph  ->  ( ps  ->  A. z ps ) )   =>    |-  ( ph  ->  ( [
 y  /  z ] [ z  /  x ] ps  <->  [ y  /  x ] ps ) )
 
Theoremsbco2vd 1960* Version of sbco2d 1959 with a distinct variable constraint between  x and  z. (Contributed by Jim Kingdon, 19-Feb-2018.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  A. z ph )   &    |-  ( ph  ->  ( ps  ->  A. z ps ) )   =>    |-  ( ph  ->  ( [
 y  /  z ] [ z  /  x ] ps  <->  [ y  /  x ] ps ) )
 
Theoremsbco 1961 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( [ y  /  x ] [ x  /  y ] ph  <->  [ y  /  x ] ph )
 
Theoremsbco3v 1962* Version of sbco3 1967 with a distinct variable constraint between  x and  y. (Contributed by Jim Kingdon, 19-Feb-2018.)
 |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
 
Theoremsbcocom 1963 Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
 |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )
 
Theoremsbcomv 1964* Version of sbcom 1968 with a distinct variable constraint between  x and  z. (Contributed by Jim Kingdon, 28-Feb-2018.)
 |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
 
Theoremsbcomxyyz 1965* Version of sbcom 1968 with distinct variable constraints between  x and  y, and  y and  z. (Contributed by Jim Kingdon, 21-Mar-2018.)
 |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
 
Theoremsbco3xzyz 1966* Version of sbco3 1967 with distinct variable constraints between  x and  z, and  y and  z. Lemma for proving sbco3 1967. (Contributed by Jim Kingdon, 22-Mar-2018.)
 |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
 
Theoremsbco3 1967 A composition law for substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
 |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
 
Theoremsbcom 1968 A commutativity law for substitution. (Contributed by NM, 27-May-1997.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
 |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
 
Theoremnfsbt 1969* Closed form of nfsb 1939. (Contributed by Jim Kingdon, 9-May-2018.)
 |-  ( A. x F/ z ph  ->  F/ z [ y  /  x ] ph )
 
Theoremnfsbd 1970* Deduction version of nfsb 1939. (Contributed by NM, 15-Feb-2013.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/ z ps )   =>    |-  ( ph  ->  F/ z [ y  /  x ] ps )
 
Theoremsb9v 1971* Like sb9 1972 but with a distinct variable constraint between  x and  y. (Contributed by Jim Kingdon, 28-Feb-2018.)
 |-  ( A. x [ x  /  y ] ph  <->  A. y [ y  /  x ] ph )
 
Theoremsb9 1972 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
 |-  ( A. x [ x  /  y ] ph  <->  A. y [ y  /  x ] ph )
 
Theoremsb9i 1973 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
 |-  ( A. x [ x  /  y ] ph  ->  A. y [ y  /  x ] ph )
 
Theoremsbnf2 1974* Two ways of expressing " x is (effectively) not free in  ph." (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |-  ( F/ x ph  <->  A. y A. z ( [
 y  /  x ] ph 
 <->  [ z  /  x ] ph ) )
 
Theoremhbsbd 1975* Deduction version of hbsb 1942. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  A. z ph )   &    |-  ( ph  ->  ( ps  ->  A. z ps ) )   =>    |-  ( ph  ->  ( [
 y  /  x ] ps  ->  A. z [ y  /  x ] ps )
 )
 
Theorem2sb5 1976* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
 |-  ( [ z  /  x ] [ w  /  y ] ph  <->  E. x E. y
 ( ( x  =  z  /\  y  =  w )  /\  ph )
 )
 
Theorem2sb6 1977* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
 |-  ( [ z  /  x ] [ w  /  y ] ph  <->  A. x A. y
 ( ( x  =  z  /\  y  =  w )  ->  ph )
 )
 
Theoremsbcom2v 1978* Lemma for proving sbcom2 1980. It is the same as sbcom2 1980 but with additional distinct variable constraints on  x and  y, and on  w and  z. (Contributed by Jim Kingdon, 19-Feb-2018.)
 |-  ( [ w  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
 
Theoremsbcom2v2 1979* Lemma for proving sbcom2 1980. It is the same as sbcom2v 1978 but removes the distinct variable constraint on  x and  y. (Contributed by Jim Kingdon, 19-Feb-2018.)
 |-  ( [ w  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
 
Theoremsbcom2 1980* Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
 |-  ( [ w  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
 
Theoremsb6a 1981* Equivalence for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  [ x  /  y ] ph )
 )
 
Theorem2sb5rf 1982* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
 |-  ( ph  ->  A. z ph )   &    |-  ( ph  ->  A. w ph )   =>    |-  ( ph  <->  E. z E. w ( ( z  =  x  /\  w  =  y )  /\  [
 z  /  x ] [ w  /  y ] ph ) )
 
Theorem2sb6rf 1983* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
 |-  ( ph  ->  A. z ph )   &    |-  ( ph  ->  A. w ph )   =>    |-  ( ph  <->  A. z A. w ( ( z  =  x  /\  w  =  y )  ->  [ z  /  x ] [ w  /  y ] ph )
 )
 
Theoremdfsb7 1984* An alternate definition of proper substitution df-sb 1756. By introducing a dummy variable  z in the definiens, we are able to eliminate any distinct variable restrictions among the variables  x,  y, and  ph of the definiendum. No distinct variable conflicts arise because  z effectively insulates  x from  y. To achieve this, we use a chain of two substitutions in the form of sb5 1880, first  z for  x then  y for  z. Compare Definition 2.1'' of [Quine] p. 17. Theorem sb7f 1985 provides a version where  ph and  z don't have to be distinct. (Contributed by NM, 28-Jan-2004.)
 |-  ( [ y  /  x ] ph  <->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
 ) )
 
Theoremsb7f 1985* This version of dfsb7 1984 does not require that  ph and  z be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1519, i.e., that does not have the concept of a variable not occurring in a formula. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  A. z ph )   =>    |-  ( [ y  /  x ] ph  <->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
 ) )
 
Theoremsb7af 1986* An alternate definition of proper substitution df-sb 1756. Similar to dfsb7a 1987 but does not require that  ph and  z be distinct. Similar to sb7f 1985 in that it involves a dummy variable  z, but expressed in terms of  A. rather than  E.. (Contributed by Jim Kingdon, 5-Feb-2018.)
 |- 
 F/ z ph   =>    |-  ( [ y  /  x ] ph  <->  A. z ( z  =  y  ->  A. x ( x  =  z  -> 
 ph ) ) )
 
Theoremdfsb7a 1987* An alternate definition of proper substitution df-sb 1756. Similar to dfsb7 1984 in that it involves a dummy variable  z, but expressed in terms of  A. rather than  E.. For a version which only requires  F/ z ph rather than  z and  ph being distinct, see sb7af 1986. (Contributed by Jim Kingdon, 5-Feb-2018.)
 |-  ( [ y  /  x ] ph  <->  A. z ( z  =  y  ->  A. x ( x  =  z  -> 
 ph ) ) )
 
Theoremsb10f 1988* Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( [ y  /  z ] ph  <->  E. x ( x  =  y  /\  [ x  /  z ] ph ) )
 
Theoremsbid2v 1989* An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
 |-  ( [ y  /  x ] [ x  /  y ] ph  <->  ph )
 
Theoremsbelx 1990* Elimination of substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  E. x ( x  =  y  /\  [ x  /  y ] ph ) )
 
Theoremsbel2x 1991* Elimination of double substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  E. x E. y
 ( ( x  =  z  /\  y  =  w )  /\  [
 y  /  w ] [ x  /  z ] ph ) )
 
Theoremsbalyz 1992* Move universal quantifier in and out of substitution. Identical to sbal 1993 except that it has an additional distinct variable constraint on  y and  z. (Contributed by Jim Kingdon, 29-Dec-2017.)
 |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 
Theoremsbal 1993* Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
 |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 
Theoremsbal1yz 1994* Lemma for proving sbal1 1995. Same as sbal1 1995 but with an additional disjoint variable condition on 
y ,  z. (Contributed by Jim Kingdon, 23-Feb-2018.)
 |-  ( -.  A. x  x  =  z  ->  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 )
 
Theoremsbal1 1995* A theorem used in elimination of disjoint variable conditions on  x ,  y by replacing it with a distinctor  -.  A. x x  =  z. (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.)
 |-  ( -.  A. x  x  =  z  ->  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 )
 
Theoremsbexyz 1996* Move existential quantifier in and out of substitution. Identical to sbex 1997 except that it has an additional disjoint variable condition on  y ,  z. (Contributed by Jim Kingdon, 29-Dec-2017.)
 |-  ( [ z  /  y ] E. x ph  <->  E. x [ z  /  y ] ph )
 
Theoremsbex 1997* Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
 |-  ( [ z  /  y ] E. x ph  <->  E. x [ z  /  y ] ph )
 
Theoremsbalv 1998* Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
 |-  ( [ y  /  x ] ph  <->  ps )   =>    |-  ( [ y  /  x ] A. z ph  <->  A. z ps )
 
Theoremsbco4lem 1999* Lemma for sbco4 2000. It replaces the temporary variable  v with another temporary variable  w. (Contributed by Jim Kingdon, 26-Sep-2018.)
 |-  ( [ x  /  v ] [ y  /  x ] [ v  /  y ] ph  <->  [ x  /  w ] [ y  /  x ] [ w  /  y ] ph )
 
Theoremsbco4 2000* Two ways of exchanging two variables. Both sides of the biconditional exchange  x and  y, either via two temporary variables  u and  v, or a single temporary  w. (Contributed by Jim Kingdon, 25-Sep-2018.)
 |-  ( [ y  /  u ] [ x  /  v ] [ u  /  x ] [ v  /  y ] ph  <->  [ x  /  w ] [ y  /  x ] [ w  /  y ] ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >