ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexdvaw Unicode version

Theorem cbvexdvaw 1943
Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 1941 with a disjoint variable condition. (Contributed by David Moews, 1-May-2017.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Feb-2024.)
Hypothesis
Ref Expression
cbvaldvaw.1  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
cbvexdvaw  |-  ( ph  ->  ( E. x ps  <->  E. y ch ) )
Distinct variable groups:    ps, y    ch, x    ph, x, y
Allowed substitution hints:    ps( x)    ch( y)

Proof of Theorem cbvexdvaw
StepHypRef Expression
1 cbvaldvaw.1 . 2  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
21cbvexdva 1941 1  |-  ( ph  ->  ( E. x ps  <->  E. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  cbvex2vw  1945
  Copyright terms: Public domain W3C validator