ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexdva Unicode version

Theorem cbvexdva 1953
Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvaldva.1  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
cbvexdva  |-  ( ph  ->  ( E. x ps  <->  E. y ch ) )
Distinct variable groups:    ps, y    ch, x    ph, x    ph, y
Allowed substitution hints:    ps( x)    ch( y)

Proof of Theorem cbvexdva
StepHypRef Expression
1 nfv 1551 . 2  |-  F/ y
ph
2 nfvd 1552 . 2  |-  ( ph  ->  F/ y ps )
3 cbvaldva.1 . . 3  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
43ex 115 . 2  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
51, 2, 4cbvexd 1951 1  |-  ( ph  ->  ( E. x ps  <->  E. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484
This theorem is referenced by:  cbvexdvaw  1955  cbvrexdva2  2746  acexmid  5945  tfrlemi1  6420  ltexpri  7728  recexpr  7753
  Copyright terms: Public domain W3C validator