ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqi GIF version

Theorem cdeqi 2936
Description: Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqi.1 (𝑥 = 𝑦𝜑)
Assertion
Ref Expression
cdeqi CondEq(𝑥 = 𝑦𝜑)

Proof of Theorem cdeqi
StepHypRef Expression
1 cdeqi.1 . 2 (𝑥 = 𝑦𝜑)
2 df-cdeq 2935 . 2 (CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))
31, 2mpbir 145 1 CondEq(𝑥 = 𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  CondEqwcdeq 2934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-cdeq 2935
This theorem is referenced by:  cdeqth  2938  cdeqnot  2939  cdeqal  2940  cdeqab  2941  cdeqim  2944  cdeqcv  2945  cdeqeq  2946  cdeqel  2947
  Copyright terms: Public domain W3C validator