ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqel Unicode version

Theorem cdeqel 2960
Description: Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
cdeqeq.1  |- CondEq ( x  =  y  ->  A  =  B )
cdeqeq.2  |- CondEq ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
cdeqel  |- CondEq ( x  =  y  ->  ( A  e.  C  <->  B  e.  D ) )

Proof of Theorem cdeqel
StepHypRef Expression
1 cdeqeq.1 . . . 4  |- CondEq ( x  =  y  ->  A  =  B )
21cdeqri 2950 . . 3  |-  ( x  =  y  ->  A  =  B )
3 cdeqeq.2 . . . 4  |- CondEq ( x  =  y  ->  C  =  D )
43cdeqri 2950 . . 3  |-  ( x  =  y  ->  C  =  D )
52, 4eleq12d 2248 . 2  |-  ( x  =  y  ->  ( A  e.  C  <->  B  e.  D ) )
65cdeqi 2949 1  |- CondEq ( x  =  y  ->  ( A  e.  C  <->  B  e.  D ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148  CondEqwcdeq 2947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173  df-cdeq 2948
This theorem is referenced by:  nfccdeq  2962
  Copyright terms: Public domain W3C validator