Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > barbari | Unicode version |
Description: "Barbari", one of the syllogisms of Aristotelian logic. All is , all is , and some exist, therefore some is . (In Aristotelian notation, AAI-1: MaP and SaM therefore SiP.) For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 30-Aug-2016.) |
Ref | Expression |
---|---|
barbari.maj | |
barbari.min | |
barbari.e |
Ref | Expression |
---|---|
barbari |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | barbari.e | . 2 | |
2 | barbari.maj | . . . . 5 | |
3 | barbari.min | . . . . 5 | |
4 | 2, 3 | barbara 2117 | . . . 4 |
5 | 4 | spi 1529 | . . 3 |
6 | 5 | ancli 321 | . 2 |
7 | 1, 6 | eximii 1595 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: celaront 2122 |
Copyright terms: Public domain | W3C validator |