ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  barbari Unicode version

Theorem barbari 2108
Description: "Barbari", one of the syllogisms of Aristotelian logic. All  ph is  ps, all  ch is  ph, and some  ch exist, therefore some  ch is  ps. (In Aristotelian notation, AAI-1: MaP and SaM therefore SiP.) For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 30-Aug-2016.)
Hypotheses
Ref Expression
barbari.maj  |-  A. x
( ph  ->  ps )
barbari.min  |-  A. x
( ch  ->  ph )
barbari.e  |-  E. x ch
Assertion
Ref Expression
barbari  |-  E. x
( ch  /\  ps )

Proof of Theorem barbari
StepHypRef Expression
1 barbari.e . 2  |-  E. x ch
2 barbari.maj . . . . 5  |-  A. x
( ph  ->  ps )
3 barbari.min . . . . 5  |-  A. x
( ch  ->  ph )
42, 3barbara 2104 . . . 4  |-  A. x
( ch  ->  ps )
54spi 1516 . . 3  |-  ( ch 
->  ps )
65ancli 321 . 2  |-  ( ch 
->  ( ch  /\  ps ) )
71, 6eximii 1582 1  |-  E. x
( ch  /\  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1333   E.wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  celaront  2109
  Copyright terms: Public domain W3C validator