ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcnn Unicode version

Theorem dcnn 850
Description: Decidability of the negation of a proposition is equivalent to decidability of its double negation. See also dcn 844. The relation between dcn 844 and dcnn 850 is analogous to that between notnot 630 and notnotnot 635 (and directly stems from it). Using the notion of "testable proposition" (proposition whose negation is decidable), dcnn 850 means that a proposition is testable if and only if its negation is testable, and dcn 844 means that decidability implies testability. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof shortened by BJ, 25-Nov-2023.)
Assertion
Ref Expression
dcnn  |-  (DECID  -.  ph  <-> DECID  -.  -.  ph )

Proof of Theorem dcnn
StepHypRef Expression
1 dcn 844 . 2  |-  (DECID  -.  ph  -> DECID  -. 
-.  ph )
2 stabnot 835 . . 3  |- STAB  -.  ph
3 stdcn 849 . . 3  |-  (STAB  -.  ph  <->  (DECID  -. 
-.  ph  -> DECID  -.  ph ) )
42, 3mpbi 145 . 2  |-  (DECID  -.  -.  ph 
-> DECID  -. 
ph )
51, 4impbii 126 1  |-  (DECID  -.  ph  <-> DECID  -.  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105  STAB wstab 832  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator