ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnotnot Unicode version

Theorem notnotnot 634
Description: Triple negation is equivalent to negation. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
notnotnot  |-  ( -. 
-.  -.  ph  <->  -.  ph )

Proof of Theorem notnotnot
StepHypRef Expression
1 notnot 629 . . 3  |-  ( ph  ->  -.  -.  ph )
21con3i 632 . 2  |-  ( -. 
-.  -.  ph  ->  -.  ph )
3 notnot 629 . 2  |-  ( -. 
ph  ->  -.  -.  -.  ph )
42, 3impbii 126 1  |-  ( -. 
-.  -.  ph  <->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  stabnot  833  dcnnOLD  849  bj-nnsn  14455
  Copyright terms: Public domain W3C validator