ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcnn GIF version

Theorem dcnn 849
Description: Decidability of the negation of a proposition is equivalent to decidability of its double negation. See also dcn 843. The relation between dcn 843 and dcnn 849 is analogous to that between notnot 630 and notnotnot 635 (and directly stems from it). Using the notion of "testable proposition" (proposition whose negation is decidable), dcnn 849 means that a proposition is testable if and only if its negation is testable, and dcn 843 means that decidability implies testability. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof shortened by BJ, 25-Nov-2023.)
Assertion
Ref Expression
dcnn (DECID ¬ 𝜑DECID ¬ ¬ 𝜑)

Proof of Theorem dcnn
StepHypRef Expression
1 dcn 843 . 2 (DECID ¬ 𝜑DECID ¬ ¬ 𝜑)
2 stabnot 834 . . 3 STAB ¬ 𝜑
3 stdcn 848 . . 3 (STAB ¬ 𝜑 ↔ (DECID ¬ ¬ 𝜑DECID ¬ 𝜑))
42, 3mpbi 145 . 2 (DECID ¬ ¬ 𝜑DECID ¬ 𝜑)
51, 4impbii 126 1 (DECID ¬ 𝜑DECID ¬ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  STAB wstab 831  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator