ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcnn GIF version

Theorem dcnn 853
Description: Decidability of the negation of a proposition is equivalent to decidability of its double negation. See also dcn 847. The relation between dcn 847 and dcnn 853 is analogous to that between notnot 632 and notnotnot 637 (and directly stems from it). Using the notion of "testable proposition" (proposition whose negation is decidable), dcnn 853 means that a proposition is testable if and only if its negation is testable, and dcn 847 means that decidability implies testability. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof shortened by BJ, 25-Nov-2023.)
Assertion
Ref Expression
dcnn (DECID ¬ 𝜑DECID ¬ ¬ 𝜑)

Proof of Theorem dcnn
StepHypRef Expression
1 dcn 847 . 2 (DECID ¬ 𝜑DECID ¬ ¬ 𝜑)
2 stabnot 838 . . 3 STAB ¬ 𝜑
3 stdcn 852 . . 3 (STAB ¬ 𝜑 ↔ (DECID ¬ ¬ 𝜑DECID ¬ 𝜑))
42, 3mpbi 145 . 2 (DECID ¬ ¬ 𝜑DECID ¬ 𝜑)
51, 4impbii 126 1 (DECID ¬ 𝜑DECID ¬ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  STAB wstab 835  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator