ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedlema Unicode version

Theorem dedlema 959
Description: Lemma for iftrue 3525. (Contributed by NM, 26-Jun-2002.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
dedlema  |-  ( ph  ->  ( ps  <->  ( ( ps  /\  ph )  \/  ( ch  /\  -.  ph ) ) ) )

Proof of Theorem dedlema
StepHypRef Expression
1 orc 702 . . 3  |-  ( ( ps  /\  ph )  ->  ( ( ps  /\  ph )  \/  ( ch 
/\  -.  ph ) ) )
21expcom 115 . 2  |-  ( ph  ->  ( ps  ->  (
( ps  /\  ph )  \/  ( ch  /\ 
-.  ph ) ) ) )
3 simpl 108 . . . 4  |-  ( ( ps  /\  ph )  ->  ps )
43a1i 9 . . 3  |-  ( ph  ->  ( ( ps  /\  ph )  ->  ps )
)
5 pm2.24 611 . . . 4  |-  ( ph  ->  ( -.  ph  ->  ps ) )
65adantld 276 . . 3  |-  ( ph  ->  ( ( ch  /\  -.  ph )  ->  ps ) )
74, 6jaod 707 . 2  |-  ( ph  ->  ( ( ( ps 
/\  ph )  \/  ( ch  /\  -.  ph )
)  ->  ps )
)
82, 7impbid 128 1  |-  ( ph  ->  ( ps  <->  ( ( ps  /\  ph )  \/  ( ch  /\  -.  ph ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  iftrue  3525
  Copyright terms: Public domain W3C validator