| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrue | Unicode version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| iftrue |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3603 |
. 2
| |
| 2 | dedlema 975 |
. . 3
| |
| 3 | 2 | abbi2dv 2348 |
. 2
|
| 4 | 1, 3 | eqtr4id 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: iftruei 3608 iftrued 3609 ifsbdc 3615 ifcldadc 3632 ifeqdadc 3635 ifbothdadc 3636 ifbothdc 3637 ifiddc 3638 ifcldcd 3640 ifnotdc 3641 2if2dc 3642 ifandc 3643 ifordc 3644 ifnefals 3647 pw2f1odclem 6991 fidifsnen 7028 nnnninf 7289 nnnninf2 7290 mkvprop 7321 iftrueb01 7404 uzin 9751 fzprval 10274 fztpval 10275 modifeq2int 10603 seqf1oglem1 10736 seqf1oglem2 10737 bcval 10966 bcval2 10967 ccatval1 11127 swrdccat 11262 pfxccat3a 11265 swrdccat3b 11267 sumrbdclem 11883 fsum3cvg 11884 summodclem2a 11887 isumss2 11899 fsum3ser 11903 fsumsplit 11913 sumsplitdc 11938 prodrbdclem 12077 fproddccvg 12078 iprodap 12086 iprodap0 12088 prodssdc 12095 fprodsplitdc 12102 flodddiv4 12442 gcd0val 12476 dfgcd2 12530 eucalgf 12572 eucalginv 12573 eucalglt 12574 phisum 12758 pc0 12822 pcgcd 12847 pcmptcl 12860 pcmpt 12861 pcmpt2 12862 pcprod 12864 fldivp1 12866 1arithlem4 12884 unct 13008 xpsfrnel 13372 znf1o 14609 dvexp2 15380 elply2 15403 elplyd 15409 ply1termlem 15410 lgsval2lem 15683 lgsneg 15697 lgsdilem 15700 lgsdir2 15706 lgsdir 15708 lgsdi 15710 lgsne0 15711 gausslemma2dlem1a 15731 2lgslem1c 15763 2lgslem3 15774 2lgs 15777 opvtxval 15816 opiedgval 15819 nnsf 16330 nninfsellemsuc 16337 |
| Copyright terms: Public domain | W3C validator |