| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrue | Unicode version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| iftrue |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3571 |
. 2
| |
| 2 | dedlema 971 |
. . 3
| |
| 3 | 2 | abbi2dv 2323 |
. 2
|
| 4 | 1, 3 | eqtr4id 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-if 3571 |
| This theorem is referenced by: iftruei 3576 iftrued 3577 ifsbdc 3582 ifcldadc 3599 ifeqdadc 3602 ifbothdadc 3603 ifbothdc 3604 ifiddc 3605 ifcldcd 3607 ifnotdc 3608 ifandc 3609 ifordc 3610 ifnefals 3613 pw2f1odclem 6930 fidifsnen 6966 nnnninf 7227 nnnninf2 7228 mkvprop 7259 uzin 9680 fzprval 10203 fztpval 10204 modifeq2int 10529 seqf1oglem1 10662 seqf1oglem2 10663 bcval 10892 bcval2 10893 ccatval1 11051 sumrbdclem 11659 fsum3cvg 11660 summodclem2a 11663 isumss2 11675 fsum3ser 11679 fsumsplit 11689 sumsplitdc 11714 prodrbdclem 11853 fproddccvg 11854 iprodap 11862 iprodap0 11864 prodssdc 11871 fprodsplitdc 11878 flodddiv4 12218 gcd0val 12252 dfgcd2 12306 eucalgf 12348 eucalginv 12349 eucalglt 12350 phisum 12534 pc0 12598 pcgcd 12623 pcmptcl 12636 pcmpt 12637 pcmpt2 12638 pcprod 12640 fldivp1 12642 1arithlem4 12660 unct 12784 xpsfrnel 13147 znf1o 14384 dvexp2 15155 elply2 15178 elplyd 15184 ply1termlem 15185 lgsval2lem 15458 lgsneg 15472 lgsdilem 15475 lgsdir2 15481 lgsdir 15483 lgsdi 15485 lgsne0 15486 gausslemma2dlem1a 15506 2lgslem1c 15538 2lgslem3 15549 2lgs 15552 opvtxval 15589 opiedgval 15592 nnsf 15904 nninfsellemsuc 15911 |
| Copyright terms: Public domain | W3C validator |