| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iftrue | Unicode version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| iftrue | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-if 3562 | 
. 2
 | |
| 2 | dedlema 971 | 
. . 3
 | |
| 3 | 2 | abbi2dv 2315 | 
. 2
 | 
| 4 | 1, 3 | eqtr4id 2248 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 | 
| This theorem is referenced by: iftruei 3567 iftrued 3568 ifsbdc 3573 ifcldadc 3590 ifbothdadc 3593 ifbothdc 3594 ifiddc 3595 ifcldcd 3597 ifnotdc 3598 ifandc 3599 ifordc 3600 ifnefals 3603 pw2f1odclem 6895 fidifsnen 6931 nnnninf 7192 nnnninf2 7193 mkvprop 7224 uzin 9634 fzprval 10157 fztpval 10158 modifeq2int 10478 seqf1oglem1 10611 seqf1oglem2 10612 bcval 10841 bcval2 10842 sumrbdclem 11542 fsum3cvg 11543 summodclem2a 11546 isumss2 11558 fsum3ser 11562 fsumsplit 11572 sumsplitdc 11597 prodrbdclem 11736 fproddccvg 11737 iprodap 11745 iprodap0 11747 prodssdc 11754 fprodsplitdc 11761 flodddiv4 12101 gcd0val 12127 dfgcd2 12181 eucalgf 12223 eucalginv 12224 eucalglt 12225 phisum 12409 pc0 12473 pcgcd 12498 pcmptcl 12511 pcmpt 12512 pcmpt2 12513 pcprod 12515 fldivp1 12517 1arithlem4 12535 unct 12659 xpsfrnel 12987 znf1o 14207 dvexp2 14948 elply2 14971 elplyd 14977 ply1termlem 14978 lgsval2lem 15251 lgsneg 15265 lgsdilem 15268 lgsdir2 15274 lgsdir 15276 lgsdi 15278 lgsne0 15279 gausslemma2dlem1a 15299 2lgslem1c 15331 2lgslem3 15342 2lgs 15345 nnsf 15649 nninfsellemsuc 15656 | 
| Copyright terms: Public domain | W3C validator |