| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrue | Unicode version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| iftrue |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3576 |
. 2
| |
| 2 | dedlema 972 |
. . 3
| |
| 3 | 2 | abbi2dv 2325 |
. 2
|
| 4 | 1, 3 | eqtr4id 2258 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-if 3576 |
| This theorem is referenced by: iftruei 3581 iftrued 3582 ifsbdc 3588 ifcldadc 3605 ifeqdadc 3608 ifbothdadc 3609 ifbothdc 3610 ifiddc 3611 ifcldcd 3613 ifnotdc 3614 ifandc 3615 ifordc 3616 ifnefals 3619 pw2f1odclem 6946 fidifsnen 6982 nnnninf 7243 nnnninf2 7244 mkvprop 7275 iftrueb01 7354 uzin 9701 fzprval 10224 fztpval 10225 modifeq2int 10553 seqf1oglem1 10686 seqf1oglem2 10687 bcval 10916 bcval2 10917 ccatval1 11076 sumrbdclem 11763 fsum3cvg 11764 summodclem2a 11767 isumss2 11779 fsum3ser 11783 fsumsplit 11793 sumsplitdc 11818 prodrbdclem 11957 fproddccvg 11958 iprodap 11966 iprodap0 11968 prodssdc 11975 fprodsplitdc 11982 flodddiv4 12322 gcd0val 12356 dfgcd2 12410 eucalgf 12452 eucalginv 12453 eucalglt 12454 phisum 12638 pc0 12702 pcgcd 12727 pcmptcl 12740 pcmpt 12741 pcmpt2 12742 pcprod 12744 fldivp1 12746 1arithlem4 12764 unct 12888 xpsfrnel 13251 znf1o 14488 dvexp2 15259 elply2 15282 elplyd 15288 ply1termlem 15289 lgsval2lem 15562 lgsneg 15576 lgsdilem 15579 lgsdir2 15585 lgsdir 15587 lgsdi 15589 lgsne0 15590 gausslemma2dlem1a 15610 2lgslem1c 15642 2lgslem3 15653 2lgs 15656 opvtxval 15695 opiedgval 15698 nnsf 16083 nninfsellemsuc 16090 |
| Copyright terms: Public domain | W3C validator |