| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrue | Unicode version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| iftrue |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3571 |
. 2
| |
| 2 | dedlema 971 |
. . 3
| |
| 3 | 2 | abbi2dv 2323 |
. 2
|
| 4 | 1, 3 | eqtr4id 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-if 3571 |
| This theorem is referenced by: iftruei 3576 iftrued 3577 ifsbdc 3582 ifcldadc 3599 ifeqdadc 3602 ifbothdadc 3603 ifbothdc 3604 ifiddc 3605 ifcldcd 3607 ifnotdc 3608 ifandc 3609 ifordc 3610 ifnefals 3613 pw2f1odclem 6913 fidifsnen 6949 nnnninf 7210 nnnninf2 7211 mkvprop 7242 uzin 9663 fzprval 10186 fztpval 10187 modifeq2int 10512 seqf1oglem1 10645 seqf1oglem2 10646 bcval 10875 bcval2 10876 ccatval1 11028 sumrbdclem 11607 fsum3cvg 11608 summodclem2a 11611 isumss2 11623 fsum3ser 11627 fsumsplit 11637 sumsplitdc 11662 prodrbdclem 11801 fproddccvg 11802 iprodap 11810 iprodap0 11812 prodssdc 11819 fprodsplitdc 11826 flodddiv4 12166 gcd0val 12200 dfgcd2 12254 eucalgf 12296 eucalginv 12297 eucalglt 12298 phisum 12482 pc0 12546 pcgcd 12571 pcmptcl 12584 pcmpt 12585 pcmpt2 12586 pcprod 12588 fldivp1 12590 1arithlem4 12608 unct 12732 xpsfrnel 13094 znf1o 14331 dvexp2 15102 elply2 15125 elplyd 15131 ply1termlem 15132 lgsval2lem 15405 lgsneg 15419 lgsdilem 15422 lgsdir2 15428 lgsdir 15430 lgsdi 15432 lgsne0 15433 gausslemma2dlem1a 15453 2lgslem1c 15485 2lgslem3 15496 2lgs 15499 nnsf 15806 nninfsellemsuc 15813 |
| Copyright terms: Public domain | W3C validator |