| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrue | Unicode version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| iftrue |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3571 |
. 2
| |
| 2 | dedlema 971 |
. . 3
| |
| 3 | 2 | abbi2dv 2323 |
. 2
|
| 4 | 1, 3 | eqtr4id 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-if 3571 |
| This theorem is referenced by: iftruei 3576 iftrued 3577 ifsbdc 3582 ifcldadc 3599 ifeqdadc 3602 ifbothdadc 3603 ifbothdc 3604 ifiddc 3605 ifcldcd 3607 ifnotdc 3608 ifandc 3609 ifordc 3610 ifnefals 3613 pw2f1odclem 6930 fidifsnen 6966 nnnninf 7227 nnnninf2 7228 mkvprop 7259 uzin 9680 fzprval 10203 fztpval 10204 modifeq2int 10529 seqf1oglem1 10662 seqf1oglem2 10663 bcval 10892 bcval2 10893 ccatval1 11051 sumrbdclem 11630 fsum3cvg 11631 summodclem2a 11634 isumss2 11646 fsum3ser 11650 fsumsplit 11660 sumsplitdc 11685 prodrbdclem 11824 fproddccvg 11825 iprodap 11833 iprodap0 11835 prodssdc 11842 fprodsplitdc 11849 flodddiv4 12189 gcd0val 12223 dfgcd2 12277 eucalgf 12319 eucalginv 12320 eucalglt 12321 phisum 12505 pc0 12569 pcgcd 12594 pcmptcl 12607 pcmpt 12608 pcmpt2 12609 pcprod 12611 fldivp1 12613 1arithlem4 12631 unct 12755 xpsfrnel 13118 znf1o 14355 dvexp2 15126 elply2 15149 elplyd 15155 ply1termlem 15156 lgsval2lem 15429 lgsneg 15443 lgsdilem 15446 lgsdir2 15452 lgsdir 15454 lgsdi 15456 lgsne0 15457 gausslemma2dlem1a 15477 2lgslem1c 15509 2lgslem3 15520 2lgs 15523 opvtxval 15560 opiedgval 15563 nnsf 15875 nninfsellemsuc 15882 |
| Copyright terms: Public domain | W3C validator |