![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iftrue | Unicode version |
Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
iftrue |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3558 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dedlema 971 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | abbi2dv 2312 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtr4id 2245 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3558 |
This theorem is referenced by: iftruei 3563 iftrued 3564 ifsbdc 3569 ifcldadc 3586 ifbothdadc 3589 ifbothdc 3590 ifiddc 3591 ifcldcd 3593 ifnotdc 3594 ifandc 3595 ifordc 3596 ifnefals 3599 pw2f1odclem 6890 fidifsnen 6926 nnnninf 7185 nnnninf2 7186 mkvprop 7217 uzin 9625 fzprval 10148 fztpval 10149 modifeq2int 10457 seqf1oglem1 10590 seqf1oglem2 10591 bcval 10820 bcval2 10821 sumrbdclem 11520 fsum3cvg 11521 summodclem2a 11524 isumss2 11536 fsum3ser 11540 fsumsplit 11550 sumsplitdc 11575 prodrbdclem 11714 fproddccvg 11715 iprodap 11723 iprodap0 11725 prodssdc 11732 fprodsplitdc 11739 flodddiv4 12075 gcd0val 12097 dfgcd2 12151 eucalgf 12193 eucalginv 12194 eucalglt 12195 phisum 12378 pc0 12442 pcgcd 12467 pcmptcl 12480 pcmpt 12481 pcmpt2 12482 pcprod 12484 fldivp1 12486 1arithlem4 12504 unct 12599 xpsfrnel 12927 znf1o 14139 dvexp2 14861 elply2 14881 elplyd 14887 ply1termlem 14888 lgsval2lem 15126 lgsneg 15140 lgsdilem 15143 lgsdir2 15149 lgsdir 15151 lgsdi 15153 lgsne0 15154 gausslemma2dlem1a 15174 nnsf 15495 nninfsellemsuc 15502 |
Copyright terms: Public domain | W3C validator |