Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iftrue | Unicode version |
Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
iftrue |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3527 | . 2 | |
2 | dedlema 964 | . . 3 | |
3 | 2 | abbi2dv 2289 | . 2 |
4 | 1, 3 | eqtr4id 2222 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wceq 1348 wcel 2141 cab 2156 cif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-if 3527 |
This theorem is referenced by: iftruei 3532 iftrued 3533 ifsbdc 3538 ifcldadc 3555 ifbothdadc 3557 ifbothdc 3558 ifiddc 3559 ifcldcd 3561 ifnotdc 3562 ifandc 3563 ifordc 3564 fidifsnen 6848 nnnninf 7102 nnnninf2 7103 mkvprop 7134 uzin 9519 fzprval 10038 fztpval 10039 modifeq2int 10342 bcval 10683 bcval2 10684 sumrbdclem 11340 fsum3cvg 11341 summodclem2a 11344 isumss2 11356 fsum3ser 11360 fsumsplit 11370 sumsplitdc 11395 prodrbdclem 11534 fproddccvg 11535 iprodap 11543 iprodap0 11545 prodssdc 11552 fprodsplitdc 11559 flodddiv4 11893 gcd0val 11915 dfgcd2 11969 eucalgf 12009 eucalginv 12010 eucalglt 12011 phisum 12194 pc0 12258 pcgcd 12282 pcmptcl 12294 pcmpt 12295 pcmpt2 12296 pcprod 12298 fldivp1 12300 1arithlem4 12318 unct 12397 dvexp2 13470 lgsval2lem 13705 lgsneg 13719 lgsdilem 13722 lgsdir2 13728 lgsdir 13730 lgsdi 13732 lgsne0 13733 nnsf 14038 nninfsellemsuc 14045 |
Copyright terms: Public domain | W3C validator |