Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iftrue | Unicode version |
Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
iftrue |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3521 | . 2 | |
2 | dedlema 959 | . . 3 | |
3 | 2 | abbi2dv 2285 | . 2 |
4 | 1, 3 | eqtr4id 2218 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wceq 1343 wcel 2136 cab 2151 cif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-if 3521 |
This theorem is referenced by: iftruei 3526 iftrued 3527 ifsbdc 3532 ifcldadc 3549 ifbothdadc 3551 ifbothdc 3552 ifiddc 3553 ifcldcd 3555 ifnotdc 3556 ifandc 3557 fidifsnen 6836 nnnninf 7090 nnnninf2 7091 mkvprop 7122 uzin 9498 fzprval 10017 fztpval 10018 modifeq2int 10321 bcval 10662 bcval2 10663 sumrbdclem 11318 fsum3cvg 11319 summodclem2a 11322 isumss2 11334 fsum3ser 11338 fsumsplit 11348 sumsplitdc 11373 prodrbdclem 11512 fproddccvg 11513 iprodap 11521 iprodap0 11523 prodssdc 11530 fprodsplitdc 11537 flodddiv4 11871 gcd0val 11893 dfgcd2 11947 eucalgf 11987 eucalginv 11988 eucalglt 11989 phisum 12172 pc0 12236 pcgcd 12260 pcmptcl 12272 pcmpt 12273 pcmpt2 12274 pcprod 12276 fldivp1 12278 1arithlem4 12296 unct 12375 dvexp2 13316 lgsval2lem 13551 lgsneg 13565 lgsdilem 13568 lgsdir2 13574 lgsdir 13576 lgsdi 13578 lgsne0 13579 nnsf 13885 nninfsellemsuc 13892 |
Copyright terms: Public domain | W3C validator |