ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantld Unicode version

Theorem adantld 278
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
Hypothesis
Ref Expression
adantld.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
adantld  |-  ( ph  ->  ( ( th  /\  ps )  ->  ch )
)

Proof of Theorem adantld
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( th  /\  ps )  ->  ps )
2 adantld.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syl5 32 1  |-  ( ph  ->  ( ( th  /\  ps )  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107
This theorem is referenced by:  jaoa  722  dedlema  972  dedlemb  973  prlem1  976  equveli  1782  ifnebibdc  3615  poxp  6318  nnmordi  6602  eroprf  6715  xpdom2  6926  elni2  7427  prarloclemlo  7607  xrlttr  9917  fzen  10165  eluzgtdifelfzo  10326  ssfzo12bi  10354  climuni  11604  mulcn2  11623  serf0  11663  ntrivcvgap  11859  dfgcd2  12335  lcmgcdlem  12399  lcmdvds  12401  qnumdencl  12509  infpnlem1  12682  cnplimcim  15139  dveflem  15198  gausslemma2dlem3  15540  bj-charfundcALT  15745
  Copyright terms: Public domain W3C validator