| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantld | Unicode version | ||
| Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantld.1 |
|
| Ref | Expression |
|---|---|
| adantld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | adantld.1 |
. 2
| |
| 3 | 1, 2 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
| This theorem is referenced by: jaoa 722 dedlema 972 dedlemb 973 prlem1 976 equveli 1782 ifnebibdc 3615 poxp 6320 nnmordi 6604 eroprf 6717 xpdom2 6928 elni2 7429 prarloclemlo 7609 xrlttr 9919 fzen 10167 eluzgtdifelfzo 10328 ssfzo12bi 10356 climuni 11637 mulcn2 11656 serf0 11696 ntrivcvgap 11892 dfgcd2 12368 lcmgcdlem 12432 lcmdvds 12434 qnumdencl 12542 infpnlem1 12715 cnplimcim 15172 dveflem 15231 gausslemma2dlem3 15573 bj-charfundcALT 15782 |
| Copyright terms: Public domain | W3C validator |