| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantld | Unicode version | ||
| Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantld.1 |
|
| Ref | Expression |
|---|---|
| adantld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | adantld.1 |
. 2
| |
| 3 | 1, 2 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
| This theorem is referenced by: jaoa 722 dedlema 972 dedlemb 973 prlem1 976 equveli 1783 ifnebibdc 3625 poxp 6341 nnmordi 6625 eroprf 6738 xpdom2 6951 elni2 7462 prarloclemlo 7642 xrlttr 9952 fzen 10200 eluzgtdifelfzo 10363 ssfzo12bi 10391 climuni 11719 mulcn2 11738 serf0 11778 ntrivcvgap 11974 dfgcd2 12450 lcmgcdlem 12514 lcmdvds 12516 qnumdencl 12624 infpnlem1 12797 cnplimcim 15254 dveflem 15313 gausslemma2dlem3 15655 bj-charfundcALT 15944 |
| Copyright terms: Public domain | W3C validator |