ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantld Unicode version

Theorem adantld 278
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
Hypothesis
Ref Expression
adantld.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
adantld  |-  ( ph  ->  ( ( th  /\  ps )  ->  ch )
)

Proof of Theorem adantld
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( th  /\  ps )  ->  ps )
2 adantld.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syl5 32 1  |-  ( ph  ->  ( ( th  /\  ps )  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107
This theorem is referenced by:  jaoa  722  dedlema  972  dedlemb  973  prlem1  976  equveli  1783  ifnebibdc  3625  poxp  6341  nnmordi  6625  eroprf  6738  xpdom2  6951  elni2  7462  prarloclemlo  7642  xrlttr  9952  fzen  10200  eluzgtdifelfzo  10363  ssfzo12bi  10391  climuni  11719  mulcn2  11738  serf0  11778  ntrivcvgap  11974  dfgcd2  12450  lcmgcdlem  12514  lcmdvds  12516  qnumdencl  12624  infpnlem1  12797  cnplimcim  15254  dveflem  15313  gausslemma2dlem3  15655  bj-charfundcALT  15944
  Copyright terms: Public domain W3C validator