| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantld | Unicode version | ||
| Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantld.1 |
|
| Ref | Expression |
|---|---|
| adantld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | adantld.1 |
. 2
| |
| 3 | 1, 2 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 |
| This theorem is referenced by: jaoa 722 dedlema 972 dedlemb 973 prlem1 976 equveli 1782 ifnebibdc 3615 poxp 6318 nnmordi 6602 eroprf 6715 xpdom2 6926 elni2 7427 prarloclemlo 7607 xrlttr 9917 fzen 10165 eluzgtdifelfzo 10326 ssfzo12bi 10354 climuni 11604 mulcn2 11623 serf0 11663 ntrivcvgap 11859 dfgcd2 12335 lcmgcdlem 12399 lcmdvds 12401 qnumdencl 12509 infpnlem1 12682 cnplimcim 15139 dveflem 15198 gausslemma2dlem3 15540 bj-charfundcALT 15745 |
| Copyright terms: Public domain | W3C validator |