ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantld Unicode version

Theorem adantld 276
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
Hypothesis
Ref Expression
adantld.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
adantld  |-  ( ph  ->  ( ( th  /\  ps )  ->  ch )
)

Proof of Theorem adantld
StepHypRef Expression
1 simpr 109 . 2  |-  ( ( th  /\  ps )  ->  ps )
2 adantld.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syl5 32 1  |-  ( ph  ->  ( ( th  /\  ps )  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106
This theorem is referenced by:  jaoa  710  dedlema  954  dedlemb  955  prlem1  958  equveli  1736  poxp  6169  nnmordi  6452  eroprf  6562  xpdom2  6765  elni2  7213  prarloclemlo  7393  xrlttr  9680  fzen  9923  eluzgtdifelfzo  10074  ssfzo12bi  10102  climuni  11167  mulcn2  11186  serf0  11226  ntrivcvgap  11422  dfgcd2  11869  lcmgcdlem  11925  lcmdvds  11927  qnumdencl  12032  cnplimcim  12975  dveflem  13026  bj-charfundcALT  13322
  Copyright terms: Public domain W3C validator