| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-enq | Unicode version | ||
| Description: Define equivalence relation for positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| df-enq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceq 7346 |
. 2
| |
| 2 | vx |
. . . . . . 7
| |
| 3 | 2 | cv 1363 |
. . . . . 6
|
| 4 | cnpi 7339 |
. . . . . . 7
| |
| 5 | 4, 4 | cxp 4661 |
. . . . . 6
|
| 6 | 3, 5 | wcel 2167 |
. . . . 5
|
| 7 | vy |
. . . . . . 7
| |
| 8 | 7 | cv 1363 |
. . . . . 6
|
| 9 | 8, 5 | wcel 2167 |
. . . . 5
|
| 10 | 6, 9 | wa 104 |
. . . 4
|
| 11 | vz |
. . . . . . . . . . . . 13
| |
| 12 | 11 | cv 1363 |
. . . . . . . . . . . 12
|
| 13 | vw |
. . . . . . . . . . . . 13
| |
| 14 | 13 | cv 1363 |
. . . . . . . . . . . 12
|
| 15 | 12, 14 | cop 3625 |
. . . . . . . . . . 11
|
| 16 | 3, 15 | wceq 1364 |
. . . . . . . . . 10
|
| 17 | vv |
. . . . . . . . . . . . 13
| |
| 18 | 17 | cv 1363 |
. . . . . . . . . . . 12
|
| 19 | vu |
. . . . . . . . . . . . 13
| |
| 20 | 19 | cv 1363 |
. . . . . . . . . . . 12
|
| 21 | 18, 20 | cop 3625 |
. . . . . . . . . . 11
|
| 22 | 8, 21 | wceq 1364 |
. . . . . . . . . 10
|
| 23 | 16, 22 | wa 104 |
. . . . . . . . 9
|
| 24 | cmi 7341 |
. . . . . . . . . . 11
| |
| 25 | 12, 20, 24 | co 5922 |
. . . . . . . . . 10
|
| 26 | 14, 18, 24 | co 5922 |
. . . . . . . . . 10
|
| 27 | 25, 26 | wceq 1364 |
. . . . . . . . 9
|
| 28 | 23, 27 | wa 104 |
. . . . . . . 8
|
| 29 | 28, 19 | wex 1506 |
. . . . . . 7
|
| 30 | 29, 17 | wex 1506 |
. . . . . 6
|
| 31 | 30, 13 | wex 1506 |
. . . . 5
|
| 32 | 31, 11 | wex 1506 |
. . . 4
|
| 33 | 10, 32 | wa 104 |
. . 3
|
| 34 | 33, 2, 7 | copab 4093 |
. 2
|
| 35 | 1, 34 | wceq 1364 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: enqbreq 7423 enqer 7425 enqex 7427 addpipqqs 7437 mulpipqqs 7440 enq0enq 7498 |
| Copyright terms: Public domain | W3C validator |