Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulpipqqs | Unicode version |
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) |
Ref | Expression |
---|---|
mulpipqqs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulclpi 7290 | . . . 4 | |
2 | mulclpi 7290 | . . . 4 | |
3 | opelxpi 4643 | . . . 4 | |
4 | 1, 2, 3 | syl2an 287 | . . 3 |
5 | 4 | an4s 583 | . 2 |
6 | mulclpi 7290 | . . . 4 | |
7 | mulclpi 7290 | . . . 4 | |
8 | opelxpi 4643 | . . . 4 | |
9 | 6, 7, 8 | syl2an 287 | . . 3 |
10 | 9 | an4s 583 | . 2 |
11 | mulclpi 7290 | . . . 4 | |
12 | mulclpi 7290 | . . . 4 | |
13 | opelxpi 4643 | . . . 4 | |
14 | 11, 12, 13 | syl2an 287 | . . 3 |
15 | 14 | an4s 583 | . 2 |
16 | enqex 7322 | . 2 | |
17 | enqer 7320 | . 2 | |
18 | df-enq 7309 | . 2 | |
19 | simpll 524 | . . . 4 | |
20 | simprr 527 | . . . 4 | |
21 | 19, 20 | oveq12d 5871 | . . 3 |
22 | simplr 525 | . . . 4 | |
23 | simprl 526 | . . . 4 | |
24 | 22, 23 | oveq12d 5871 | . . 3 |
25 | 21, 24 | eqeq12d 2185 | . 2 |
26 | simpll 524 | . . . 4 | |
27 | simprr 527 | . . . 4 | |
28 | 26, 27 | oveq12d 5871 | . . 3 |
29 | simplr 525 | . . . 4 | |
30 | simprl 526 | . . . 4 | |
31 | 29, 30 | oveq12d 5871 | . . 3 |
32 | 28, 31 | eqeq12d 2185 | . 2 |
33 | dfmpq2 7317 | . 2 | |
34 | simpll 524 | . . . 4 | |
35 | simprl 526 | . . . 4 | |
36 | 34, 35 | oveq12d 5871 | . . 3 |
37 | simplr 525 | . . . 4 | |
38 | simprr 527 | . . . 4 | |
39 | 37, 38 | oveq12d 5871 | . . 3 |
40 | 36, 39 | opeq12d 3773 | . 2 |
41 | simpll 524 | . . . 4 | |
42 | simprl 526 | . . . 4 | |
43 | 41, 42 | oveq12d 5871 | . . 3 |
44 | simplr 525 | . . . 4 | |
45 | simprr 527 | . . . 4 | |
46 | 44, 45 | oveq12d 5871 | . . 3 |
47 | 43, 46 | opeq12d 3773 | . 2 |
48 | simpll 524 | . . . 4 | |
49 | simprl 526 | . . . 4 | |
50 | 48, 49 | oveq12d 5871 | . . 3 |
51 | simplr 525 | . . . 4 | |
52 | simprr 527 | . . . 4 | |
53 | 51, 52 | oveq12d 5871 | . . 3 |
54 | 50, 53 | opeq12d 3773 | . 2 |
55 | df-mqqs 7312 | . 2 | |
56 | df-nqqs 7310 | . 2 | |
57 | mulcmpblnq 7330 | . 2 | |
58 | 5, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57 | oviec 6619 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cop 3586 cxp 4609 (class class class)co 5853 cec 6511 cnpi 7234 cmi 7236 cmpq 7239 ceq 7241 cnq 7242 cmq 7245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-mqqs 7312 |
This theorem is referenced by: mulclnq 7338 mulcomnqg 7345 mulassnqg 7346 distrnqg 7349 mulidnq 7351 recexnq 7352 ltmnqg 7363 nqnq0m 7417 |
Copyright terms: Public domain | W3C validator |