Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulpipqqs | Unicode version |
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) |
Ref | Expression |
---|---|
mulpipqqs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulclpi 7269 | . . . 4 | |
2 | mulclpi 7269 | . . . 4 | |
3 | opelxpi 4636 | . . . 4 | |
4 | 1, 2, 3 | syl2an 287 | . . 3 |
5 | 4 | an4s 578 | . 2 |
6 | mulclpi 7269 | . . . 4 | |
7 | mulclpi 7269 | . . . 4 | |
8 | opelxpi 4636 | . . . 4 | |
9 | 6, 7, 8 | syl2an 287 | . . 3 |
10 | 9 | an4s 578 | . 2 |
11 | mulclpi 7269 | . . . 4 | |
12 | mulclpi 7269 | . . . 4 | |
13 | opelxpi 4636 | . . . 4 | |
14 | 11, 12, 13 | syl2an 287 | . . 3 |
15 | 14 | an4s 578 | . 2 |
16 | enqex 7301 | . 2 | |
17 | enqer 7299 | . 2 | |
18 | df-enq 7288 | . 2 | |
19 | simpll 519 | . . . 4 | |
20 | simprr 522 | . . . 4 | |
21 | 19, 20 | oveq12d 5860 | . . 3 |
22 | simplr 520 | . . . 4 | |
23 | simprl 521 | . . . 4 | |
24 | 22, 23 | oveq12d 5860 | . . 3 |
25 | 21, 24 | eqeq12d 2180 | . 2 |
26 | simpll 519 | . . . 4 | |
27 | simprr 522 | . . . 4 | |
28 | 26, 27 | oveq12d 5860 | . . 3 |
29 | simplr 520 | . . . 4 | |
30 | simprl 521 | . . . 4 | |
31 | 29, 30 | oveq12d 5860 | . . 3 |
32 | 28, 31 | eqeq12d 2180 | . 2 |
33 | dfmpq2 7296 | . 2 | |
34 | simpll 519 | . . . 4 | |
35 | simprl 521 | . . . 4 | |
36 | 34, 35 | oveq12d 5860 | . . 3 |
37 | simplr 520 | . . . 4 | |
38 | simprr 522 | . . . 4 | |
39 | 37, 38 | oveq12d 5860 | . . 3 |
40 | 36, 39 | opeq12d 3766 | . 2 |
41 | simpll 519 | . . . 4 | |
42 | simprl 521 | . . . 4 | |
43 | 41, 42 | oveq12d 5860 | . . 3 |
44 | simplr 520 | . . . 4 | |
45 | simprr 522 | . . . 4 | |
46 | 44, 45 | oveq12d 5860 | . . 3 |
47 | 43, 46 | opeq12d 3766 | . 2 |
48 | simpll 519 | . . . 4 | |
49 | simprl 521 | . . . 4 | |
50 | 48, 49 | oveq12d 5860 | . . 3 |
51 | simplr 520 | . . . 4 | |
52 | simprr 522 | . . . 4 | |
53 | 51, 52 | oveq12d 5860 | . . 3 |
54 | 50, 53 | opeq12d 3766 | . 2 |
55 | df-mqqs 7291 | . 2 | |
56 | df-nqqs 7289 | . 2 | |
57 | mulcmpblnq 7309 | . 2 | |
58 | 5, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57 | oviec 6607 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cop 3579 cxp 4602 (class class class)co 5842 cec 6499 cnpi 7213 cmi 7215 cmpq 7218 ceq 7220 cnq 7221 cmq 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-mi 7247 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-mqqs 7291 |
This theorem is referenced by: mulclnq 7317 mulcomnqg 7324 mulassnqg 7325 distrnqg 7328 mulidnq 7330 recexnq 7331 ltmnqg 7342 nqnq0m 7396 |
Copyright terms: Public domain | W3C validator |