ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipqqs Unicode version

Theorem mulpipqqs 7335
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.)
Assertion
Ref Expression
mulpipqqs  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ]  ~Q  .Q  [ <. C ,  D >. ]  ~Q  )  =  [ <. ( A  .N  C ) ,  ( B  .N  D
) >. ]  ~Q  )

Proof of Theorem mulpipqqs
Dummy variables  x  y  z  w  v  u  t  s  f  g  h  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpi 7290 . . . 4  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  e.  N. )
2 mulclpi 7290 . . . 4  |-  ( ( B  e.  N.  /\  D  e.  N. )  ->  ( B  .N  D
)  e.  N. )
3 opelxpi 4643 . . . 4  |-  ( ( ( A  .N  C
)  e.  N.  /\  ( B  .N  D
)  e.  N. )  -> 
<. ( A  .N  C
) ,  ( B  .N  D ) >.  e.  ( N.  X.  N. ) )
41, 2, 3syl2an 287 . . 3  |-  ( ( ( A  e.  N.  /\  C  e.  N. )  /\  ( B  e.  N.  /\  D  e.  N. )
)  ->  <. ( A  .N  C ) ,  ( B  .N  D
) >.  e.  ( N. 
X.  N. ) )
54an4s 583 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( A  .N  C ) ,  ( B  .N  D
) >.  e.  ( N. 
X.  N. ) )
6 mulclpi 7290 . . . 4  |-  ( ( a  e.  N.  /\  g  e.  N. )  ->  ( a  .N  g
)  e.  N. )
7 mulclpi 7290 . . . 4  |-  ( ( b  e.  N.  /\  h  e.  N. )  ->  ( b  .N  h
)  e.  N. )
8 opelxpi 4643 . . . 4  |-  ( ( ( a  .N  g
)  e.  N.  /\  ( b  .N  h
)  e.  N. )  -> 
<. ( a  .N  g
) ,  ( b  .N  h ) >.  e.  ( N.  X.  N. ) )
96, 7, 8syl2an 287 . . 3  |-  ( ( ( a  e.  N.  /\  g  e.  N. )  /\  ( b  e.  N.  /\  h  e.  N. )
)  ->  <. ( a  .N  g ) ,  ( b  .N  h
) >.  e.  ( N. 
X.  N. ) )
109an4s 583 . 2  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( g  e.  N.  /\  h  e.  N. )
)  ->  <. ( a  .N  g ) ,  ( b  .N  h
) >.  e.  ( N. 
X.  N. ) )
11 mulclpi 7290 . . . 4  |-  ( ( c  e.  N.  /\  t  e.  N. )  ->  ( c  .N  t
)  e.  N. )
12 mulclpi 7290 . . . 4  |-  ( ( d  e.  N.  /\  s  e.  N. )  ->  ( d  .N  s
)  e.  N. )
13 opelxpi 4643 . . . 4  |-  ( ( ( c  .N  t
)  e.  N.  /\  ( d  .N  s
)  e.  N. )  -> 
<. ( c  .N  t
) ,  ( d  .N  s ) >.  e.  ( N.  X.  N. ) )
1411, 12, 13syl2an 287 . . 3  |-  ( ( ( c  e.  N.  /\  t  e.  N. )  /\  ( d  e.  N.  /\  s  e.  N. )
)  ->  <. ( c  .N  t ) ,  ( d  .N  s
) >.  e.  ( N. 
X.  N. ) )
1514an4s 583 . 2  |-  ( ( ( c  e.  N.  /\  d  e.  N. )  /\  ( t  e.  N.  /\  s  e.  N. )
)  ->  <. ( c  .N  t ) ,  ( d  .N  s
) >.  e.  ( N. 
X.  N. ) )
16 enqex 7322 . 2  |-  ~Q  e.  _V
17 enqer 7320 . 2  |-  ~Q  Er  ( N.  X.  N. )
18 df-enq 7309 . 2  |-  ~Q  =  { <. x ,  y
>.  |  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
19 simpll 524 . . . 4  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  z  =  a )
20 simprr 527 . . . 4  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  u  =  d )
2119, 20oveq12d 5871 . . 3  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( z  .N  u )  =  ( a  .N  d ) )
22 simplr 525 . . . 4  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  w  =  b )
23 simprl 526 . . . 4  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  v  =  c )
2422, 23oveq12d 5871 . . 3  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( w  .N  v )  =  ( b  .N  c ) )
2521, 24eqeq12d 2185 . 2  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( ( z  .N  u )  =  ( w  .N  v
)  <->  ( a  .N  d )  =  ( b  .N  c ) ) )
26 simpll 524 . . . 4  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  z  =  g )
27 simprr 527 . . . 4  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  u  =  s )
2826, 27oveq12d 5871 . . 3  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( z  .N  u )  =  ( g  .N  s ) )
29 simplr 525 . . . 4  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  w  =  h )
30 simprl 526 . . . 4  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  v  =  t )
3129, 30oveq12d 5871 . . 3  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( w  .N  v )  =  ( h  .N  t ) )
3228, 31eqeq12d 2185 . 2  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( ( z  .N  u )  =  ( w  .N  v
)  <->  ( g  .N  s )  =  ( h  .N  t ) ) )
33 dfmpq2 7317 . 2  |-  .pQ  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )
) }
34 simpll 524 . . . 4  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  w  =  a )
35 simprl 526 . . . 4  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  u  =  g )
3634, 35oveq12d 5871 . . 3  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  -> 
( w  .N  u
)  =  ( a  .N  g ) )
37 simplr 525 . . . 4  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  -> 
v  =  b )
38 simprr 527 . . . 4  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  -> 
f  =  h )
3937, 38oveq12d 5871 . . 3  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  -> 
( v  .N  f
)  =  ( b  .N  h ) )
4036, 39opeq12d 3773 . 2  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  <. ( w  .N  u
) ,  ( v  .N  f ) >.  =  <. ( a  .N  g ) ,  ( b  .N  h )
>. )
41 simpll 524 . . . 4  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  w  =  c )
42 simprl 526 . . . 4  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  u  =  t )
4341, 42oveq12d 5871 . . 3  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  ( w  .N  u )  =  ( c  .N  t ) )
44 simplr 525 . . . 4  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  v  =  d )
45 simprr 527 . . . 4  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  f  =  s )
4644, 45oveq12d 5871 . . 3  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  ( v  .N  f )  =  ( d  .N  s ) )
4743, 46opeq12d 3773 . 2  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  <. ( w  .N  u ) ,  ( v  .N  f )
>.  =  <. ( c  .N  t ) ,  ( d  .N  s
) >. )
48 simpll 524 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  w  =  A )
49 simprl 526 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  u  =  C )
5048, 49oveq12d 5871 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( w  .N  u
)  =  ( A  .N  C ) )
51 simplr 525 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
v  =  B )
52 simprr 527 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
f  =  D )
5351, 52oveq12d 5871 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( v  .N  f
)  =  ( B  .N  D ) )
5450, 53opeq12d 3773 . 2  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  <. ( w  .N  u
) ,  ( v  .N  f ) >.  =  <. ( A  .N  C ) ,  ( B  .N  D )
>. )
55 df-mqqs 7312 . 2  |-  .Q  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  ~Q  /\  y  =  [ <. c ,  d >. ]  ~Q  )  /\  z  =  [
( <. a ,  b
>.  .pQ  <. c ,  d
>. ) ]  ~Q  )
) }
56 df-nqqs 7310 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
57 mulcmpblnq 7330 . 2  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )
)  /\  ( (
g  e.  N.  /\  h  e.  N. )  /\  ( t  e.  N.  /\  s  e.  N. )
) )  ->  (
( ( a  .N  d )  =  ( b  .N  c )  /\  ( g  .N  s )  =  ( h  .N  t ) )  ->  <. ( a  .N  g ) ,  ( b  .N  h
) >.  ~Q  <. ( c  .N  t ) ,  ( d  .N  s
) >. ) )
585, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57oviec 6619 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ]  ~Q  .Q  [ <. C ,  D >. ]  ~Q  )  =  [ <. ( A  .N  C ) ,  ( B  .N  D
) >. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3586    X. cxp 4609  (class class class)co 5853   [cec 6511   N.cnpi 7234    .N cmi 7236    .pQ cmpq 7239    ~Q ceq 7241   Q.cnq 7242    .Q cmq 7245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-mqqs 7312
This theorem is referenced by:  mulclnq  7338  mulcomnqg  7345  mulassnqg  7346  distrnqg  7349  mulidnq  7351  recexnq  7352  ltmnqg  7363  nqnq0m  7417
  Copyright terms: Public domain W3C validator