| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulpipqqs | Unicode version | ||
| Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulpipqqs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulclpi 7476 |
. . . 4
| |
| 2 | mulclpi 7476 |
. . . 4
| |
| 3 | opelxpi 4725 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2an 289 |
. . 3
|
| 5 | 4 | an4s 588 |
. 2
|
| 6 | mulclpi 7476 |
. . . 4
| |
| 7 | mulclpi 7476 |
. . . 4
| |
| 8 | opelxpi 4725 |
. . . 4
| |
| 9 | 6, 7, 8 | syl2an 289 |
. . 3
|
| 10 | 9 | an4s 588 |
. 2
|
| 11 | mulclpi 7476 |
. . . 4
| |
| 12 | mulclpi 7476 |
. . . 4
| |
| 13 | opelxpi 4725 |
. . . 4
| |
| 14 | 11, 12, 13 | syl2an 289 |
. . 3
|
| 15 | 14 | an4s 588 |
. 2
|
| 16 | enqex 7508 |
. 2
| |
| 17 | enqer 7506 |
. 2
| |
| 18 | df-enq 7495 |
. 2
| |
| 19 | simpll 527 |
. . . 4
| |
| 20 | simprr 531 |
. . . 4
| |
| 21 | 19, 20 | oveq12d 5985 |
. . 3
|
| 22 | simplr 528 |
. . . 4
| |
| 23 | simprl 529 |
. . . 4
| |
| 24 | 22, 23 | oveq12d 5985 |
. . 3
|
| 25 | 21, 24 | eqeq12d 2222 |
. 2
|
| 26 | simpll 527 |
. . . 4
| |
| 27 | simprr 531 |
. . . 4
| |
| 28 | 26, 27 | oveq12d 5985 |
. . 3
|
| 29 | simplr 528 |
. . . 4
| |
| 30 | simprl 529 |
. . . 4
| |
| 31 | 29, 30 | oveq12d 5985 |
. . 3
|
| 32 | 28, 31 | eqeq12d 2222 |
. 2
|
| 33 | dfmpq2 7503 |
. 2
| |
| 34 | simpll 527 |
. . . 4
| |
| 35 | simprl 529 |
. . . 4
| |
| 36 | 34, 35 | oveq12d 5985 |
. . 3
|
| 37 | simplr 528 |
. . . 4
| |
| 38 | simprr 531 |
. . . 4
| |
| 39 | 37, 38 | oveq12d 5985 |
. . 3
|
| 40 | 36, 39 | opeq12d 3841 |
. 2
|
| 41 | simpll 527 |
. . . 4
| |
| 42 | simprl 529 |
. . . 4
| |
| 43 | 41, 42 | oveq12d 5985 |
. . 3
|
| 44 | simplr 528 |
. . . 4
| |
| 45 | simprr 531 |
. . . 4
| |
| 46 | 44, 45 | oveq12d 5985 |
. . 3
|
| 47 | 43, 46 | opeq12d 3841 |
. 2
|
| 48 | simpll 527 |
. . . 4
| |
| 49 | simprl 529 |
. . . 4
| |
| 50 | 48, 49 | oveq12d 5985 |
. . 3
|
| 51 | simplr 528 |
. . . 4
| |
| 52 | simprr 531 |
. . . 4
| |
| 53 | 51, 52 | oveq12d 5985 |
. . 3
|
| 54 | 50, 53 | opeq12d 3841 |
. 2
|
| 55 | df-mqqs 7498 |
. 2
| |
| 56 | df-nqqs 7496 |
. 2
| |
| 57 | mulcmpblnq 7516 |
. 2
| |
| 58 | 5, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57 | oviec 6751 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-mi 7454 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-mqqs 7498 |
| This theorem is referenced by: mulclnq 7524 mulcomnqg 7531 mulassnqg 7532 distrnqg 7535 mulidnq 7537 recexnq 7538 ltmnqg 7549 nqnq0m 7603 |
| Copyright terms: Public domain | W3C validator |