ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipqqs Unicode version

Theorem mulpipqqs 7521
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.)
Assertion
Ref Expression
mulpipqqs  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ]  ~Q  .Q  [ <. C ,  D >. ]  ~Q  )  =  [ <. ( A  .N  C ) ,  ( B  .N  D
) >. ]  ~Q  )

Proof of Theorem mulpipqqs
Dummy variables  x  y  z  w  v  u  t  s  f  g  h  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpi 7476 . . . 4  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  e.  N. )
2 mulclpi 7476 . . . 4  |-  ( ( B  e.  N.  /\  D  e.  N. )  ->  ( B  .N  D
)  e.  N. )
3 opelxpi 4725 . . . 4  |-  ( ( ( A  .N  C
)  e.  N.  /\  ( B  .N  D
)  e.  N. )  -> 
<. ( A  .N  C
) ,  ( B  .N  D ) >.  e.  ( N.  X.  N. ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( ( A  e.  N.  /\  C  e.  N. )  /\  ( B  e.  N.  /\  D  e.  N. )
)  ->  <. ( A  .N  C ) ,  ( B  .N  D
) >.  e.  ( N. 
X.  N. ) )
54an4s 588 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( A  .N  C ) ,  ( B  .N  D
) >.  e.  ( N. 
X.  N. ) )
6 mulclpi 7476 . . . 4  |-  ( ( a  e.  N.  /\  g  e.  N. )  ->  ( a  .N  g
)  e.  N. )
7 mulclpi 7476 . . . 4  |-  ( ( b  e.  N.  /\  h  e.  N. )  ->  ( b  .N  h
)  e.  N. )
8 opelxpi 4725 . . . 4  |-  ( ( ( a  .N  g
)  e.  N.  /\  ( b  .N  h
)  e.  N. )  -> 
<. ( a  .N  g
) ,  ( b  .N  h ) >.  e.  ( N.  X.  N. ) )
96, 7, 8syl2an 289 . . 3  |-  ( ( ( a  e.  N.  /\  g  e.  N. )  /\  ( b  e.  N.  /\  h  e.  N. )
)  ->  <. ( a  .N  g ) ,  ( b  .N  h
) >.  e.  ( N. 
X.  N. ) )
109an4s 588 . 2  |-  ( ( ( a  e.  N.  /\  b  e.  N. )  /\  ( g  e.  N.  /\  h  e.  N. )
)  ->  <. ( a  .N  g ) ,  ( b  .N  h
) >.  e.  ( N. 
X.  N. ) )
11 mulclpi 7476 . . . 4  |-  ( ( c  e.  N.  /\  t  e.  N. )  ->  ( c  .N  t
)  e.  N. )
12 mulclpi 7476 . . . 4  |-  ( ( d  e.  N.  /\  s  e.  N. )  ->  ( d  .N  s
)  e.  N. )
13 opelxpi 4725 . . . 4  |-  ( ( ( c  .N  t
)  e.  N.  /\  ( d  .N  s
)  e.  N. )  -> 
<. ( c  .N  t
) ,  ( d  .N  s ) >.  e.  ( N.  X.  N. ) )
1411, 12, 13syl2an 289 . . 3  |-  ( ( ( c  e.  N.  /\  t  e.  N. )  /\  ( d  e.  N.  /\  s  e.  N. )
)  ->  <. ( c  .N  t ) ,  ( d  .N  s
) >.  e.  ( N. 
X.  N. ) )
1514an4s 588 . 2  |-  ( ( ( c  e.  N.  /\  d  e.  N. )  /\  ( t  e.  N.  /\  s  e.  N. )
)  ->  <. ( c  .N  t ) ,  ( d  .N  s
) >.  e.  ( N. 
X.  N. ) )
16 enqex 7508 . 2  |-  ~Q  e.  _V
17 enqer 7506 . 2  |-  ~Q  Er  ( N.  X.  N. )
18 df-enq 7495 . 2  |-  ~Q  =  { <. x ,  y
>.  |  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
19 simpll 527 . . . 4  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  z  =  a )
20 simprr 531 . . . 4  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  u  =  d )
2119, 20oveq12d 5985 . . 3  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( z  .N  u )  =  ( a  .N  d ) )
22 simplr 528 . . . 4  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  w  =  b )
23 simprl 529 . . . 4  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  v  =  c )
2422, 23oveq12d 5985 . . 3  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( w  .N  v )  =  ( b  .N  c ) )
2521, 24eqeq12d 2222 . 2  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( ( z  .N  u )  =  ( w  .N  v
)  <->  ( a  .N  d )  =  ( b  .N  c ) ) )
26 simpll 527 . . . 4  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  z  =  g )
27 simprr 531 . . . 4  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  u  =  s )
2826, 27oveq12d 5985 . . 3  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( z  .N  u )  =  ( g  .N  s ) )
29 simplr 528 . . . 4  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  w  =  h )
30 simprl 529 . . . 4  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  v  =  t )
3129, 30oveq12d 5985 . . 3  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( w  .N  v )  =  ( h  .N  t ) )
3228, 31eqeq12d 2222 . 2  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( ( z  .N  u )  =  ( w  .N  v
)  <->  ( g  .N  s )  =  ( h  .N  t ) ) )
33 dfmpq2 7503 . 2  |-  .pQ  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  .N  u ) ,  ( v  .N  f ) >. )
) }
34 simpll 527 . . . 4  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  w  =  a )
35 simprl 529 . . . 4  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  u  =  g )
3634, 35oveq12d 5985 . . 3  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  -> 
( w  .N  u
)  =  ( a  .N  g ) )
37 simplr 528 . . . 4  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  -> 
v  =  b )
38 simprr 531 . . . 4  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  -> 
f  =  h )
3937, 38oveq12d 5985 . . 3  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  -> 
( v  .N  f
)  =  ( b  .N  h ) )
4036, 39opeq12d 3841 . 2  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  <. ( w  .N  u
) ,  ( v  .N  f ) >.  =  <. ( a  .N  g ) ,  ( b  .N  h )
>. )
41 simpll 527 . . . 4  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  w  =  c )
42 simprl 529 . . . 4  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  u  =  t )
4341, 42oveq12d 5985 . . 3  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  ( w  .N  u )  =  ( c  .N  t ) )
44 simplr 528 . . . 4  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  v  =  d )
45 simprr 531 . . . 4  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  f  =  s )
4644, 45oveq12d 5985 . . 3  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  ( v  .N  f )  =  ( d  .N  s ) )
4743, 46opeq12d 3841 . 2  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  <. ( w  .N  u ) ,  ( v  .N  f )
>.  =  <. ( c  .N  t ) ,  ( d  .N  s
) >. )
48 simpll 527 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  w  =  A )
49 simprl 529 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  u  =  C )
5048, 49oveq12d 5985 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( w  .N  u
)  =  ( A  .N  C ) )
51 simplr 528 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
v  =  B )
52 simprr 531 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
f  =  D )
5351, 52oveq12d 5985 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( v  .N  f
)  =  ( B  .N  D ) )
5450, 53opeq12d 3841 . 2  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  <. ( w  .N  u
) ,  ( v  .N  f ) >.  =  <. ( A  .N  C ) ,  ( B  .N  D )
>. )
55 df-mqqs 7498 . 2  |-  .Q  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  ~Q  /\  y  =  [ <. c ,  d >. ]  ~Q  )  /\  z  =  [
( <. a ,  b
>.  .pQ  <. c ,  d
>. ) ]  ~Q  )
) }
56 df-nqqs 7496 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
57 mulcmpblnq 7516 . 2  |-  ( ( ( ( a  e. 
N.  /\  b  e.  N. )  /\  (
c  e.  N.  /\  d  e.  N. )
)  /\  ( (
g  e.  N.  /\  h  e.  N. )  /\  ( t  e.  N.  /\  s  e.  N. )
) )  ->  (
( ( a  .N  d )  =  ( b  .N  c )  /\  ( g  .N  s )  =  ( h  .N  t ) )  ->  <. ( a  .N  g ) ,  ( b  .N  h
) >.  ~Q  <. ( c  .N  t ) ,  ( d  .N  s
) >. ) )
585, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57oviec 6751 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ]  ~Q  .Q  [ <. C ,  D >. ]  ~Q  )  =  [ <. ( A  .N  C ) ,  ( B  .N  D
) >. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   <.cop 3646    X. cxp 4691  (class class class)co 5967   [cec 6641   N.cnpi 7420    .N cmi 7422    .pQ cmpq 7425    ~Q ceq 7427   Q.cnq 7428    .Q cmq 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-mi 7454  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-mqqs 7498
This theorem is referenced by:  mulclnq  7524  mulcomnqg  7531  mulassnqg  7532  distrnqg  7535  mulidnq  7537  recexnq  7538  ltmnqg  7549  nqnq0m  7603
  Copyright terms: Public domain W3C validator