ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqex Unicode version

Theorem enqex 6919
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
enqex  |-  ~Q  e.  _V

Proof of Theorem enqex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 niex 6871 . . . 4  |-  N.  e.  _V
21, 1xpex 4553 . . 3  |-  ( N. 
X.  N. )  e.  _V
32, 2xpex 4553 . 2  |-  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  e.  _V
4 df-enq 6906 . . 3  |-  ~Q  =  { <. x ,  y
>.  |  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
5 opabssxp 4512 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
64, 5eqsstri 3056 . 2  |-  ~Q  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
73, 6ssexi 3977 1  |-  ~Q  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1289   E.wex 1426    e. wcel 1438   _Vcvv 2619   <.cop 3449   {copab 3898    X. cxp 4436  (class class class)co 5652   N.cnpi 6831    .N cmi 6833    ~Q ceq 6838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-opab 3900  df-iom 4406  df-xp 4444  df-ni 6863  df-enq 6906
This theorem is referenced by:  1nq  6925  addpipqqs  6929  mulpipqqs  6932  ordpipqqs  6933  addclnq  6934  mulclnq  6935  dmaddpq  6938  dmmulpq  6939  recexnq  6949  ltexnqq  6967  prarloclemarch  6977  prarloclemarch2  6978  nnnq  6981  nqpnq0nq  7012  prarloclemlt  7052  prarloclemlo  7053  prarloclemcalc  7061  nqprm  7101
  Copyright terms: Public domain W3C validator