| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enqex | Unicode version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) |
| Ref | Expression |
|---|---|
| enqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niex 7425 |
. . . 4
| |
| 2 | 1, 1 | xpex 4790 |
. . 3
|
| 3 | 2, 2 | xpex 4790 |
. 2
|
| 4 | df-enq 7460 |
. . 3
| |
| 5 | opabssxp 4749 |
. . 3
| |
| 6 | 4, 5 | eqsstri 3225 |
. 2
|
| 7 | 3, 6 | ssexi 4182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-opab 4106 df-iom 4639 df-xp 4681 df-ni 7417 df-enq 7460 |
| This theorem is referenced by: 1nq 7479 addpipqqs 7483 mulpipqqs 7486 ordpipqqs 7487 addclnq 7488 mulclnq 7489 dmaddpq 7492 dmmulpq 7493 recexnq 7503 ltexnqq 7521 prarloclemarch 7531 prarloclemarch2 7532 nnnq 7535 nqpnq0nq 7566 prarloclemlt 7606 prarloclemlo 7607 prarloclemcalc 7615 nqprm 7655 |
| Copyright terms: Public domain | W3C validator |