| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enqex | Unicode version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) |
| Ref | Expression |
|---|---|
| enqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niex 7460 |
. . . 4
| |
| 2 | 1, 1 | xpex 4808 |
. . 3
|
| 3 | 2, 2 | xpex 4808 |
. 2
|
| 4 | df-enq 7495 |
. . 3
| |
| 5 | opabssxp 4767 |
. . 3
| |
| 6 | 4, 5 | eqsstri 3233 |
. 2
|
| 7 | 3, 6 | ssexi 4198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-opab 4122 df-iom 4657 df-xp 4699 df-ni 7452 df-enq 7495 |
| This theorem is referenced by: 1nq 7514 addpipqqs 7518 mulpipqqs 7521 ordpipqqs 7522 addclnq 7523 mulclnq 7524 dmaddpq 7527 dmmulpq 7528 recexnq 7538 ltexnqq 7556 prarloclemarch 7566 prarloclemarch2 7567 nnnq 7570 nqpnq0nq 7601 prarloclemlt 7641 prarloclemlo 7642 prarloclemcalc 7650 nqprm 7690 |
| Copyright terms: Public domain | W3C validator |