ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqex Unicode version

Theorem enqex 7322
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
enqex  |-  ~Q  e.  _V

Proof of Theorem enqex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 niex 7274 . . . 4  |-  N.  e.  _V
21, 1xpex 4726 . . 3  |-  ( N. 
X.  N. )  e.  _V
32, 2xpex 4726 . 2  |-  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  e.  _V
4 df-enq 7309 . . 3  |-  ~Q  =  { <. x ,  y
>.  |  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
5 opabssxp 4685 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
64, 5eqsstri 3179 . 2  |-  ~Q  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
73, 6ssexi 4127 1  |-  ~Q  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   <.cop 3586   {copab 4049    X. cxp 4609  (class class class)co 5853   N.cnpi 7234    .N cmi 7236    ~Q ceq 7241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-opab 4051  df-iom 4575  df-xp 4617  df-ni 7266  df-enq 7309
This theorem is referenced by:  1nq  7328  addpipqqs  7332  mulpipqqs  7335  ordpipqqs  7336  addclnq  7337  mulclnq  7338  dmaddpq  7341  dmmulpq  7342  recexnq  7352  ltexnqq  7370  prarloclemarch  7380  prarloclemarch2  7381  nnnq  7384  nqpnq0nq  7415  prarloclemlt  7455  prarloclemlo  7456  prarloclemcalc  7464  nqprm  7504
  Copyright terms: Public domain W3C validator