ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqex Unicode version

Theorem enqex 7547
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
enqex  |-  ~Q  e.  _V

Proof of Theorem enqex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 niex 7499 . . . 4  |-  N.  e.  _V
21, 1xpex 4834 . . 3  |-  ( N. 
X.  N. )  e.  _V
32, 2xpex 4834 . 2  |-  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  e.  _V
4 df-enq 7534 . . 3  |-  ~Q  =  { <. x ,  y
>.  |  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
5 opabssxp 4793 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
64, 5eqsstri 3256 . 2  |-  ~Q  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
73, 6ssexi 4222 1  |-  ~Q  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   <.cop 3669   {copab 4144    X. cxp 4717  (class class class)co 6001   N.cnpi 7459    .N cmi 7461    ~Q ceq 7466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-opab 4146  df-iom 4683  df-xp 4725  df-ni 7491  df-enq 7534
This theorem is referenced by:  1nq  7553  addpipqqs  7557  mulpipqqs  7560  ordpipqqs  7561  addclnq  7562  mulclnq  7563  dmaddpq  7566  dmmulpq  7567  recexnq  7577  ltexnqq  7595  prarloclemarch  7605  prarloclemarch2  7606  nnnq  7609  nqpnq0nq  7640  prarloclemlt  7680  prarloclemlo  7681  prarloclemcalc  7689  nqprm  7729
  Copyright terms: Public domain W3C validator