| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enqex | Unicode version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) |
| Ref | Expression |
|---|---|
| enqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niex 7499 |
. . . 4
| |
| 2 | 1, 1 | xpex 4834 |
. . 3
|
| 3 | 2, 2 | xpex 4834 |
. 2
|
| 4 | df-enq 7534 |
. . 3
| |
| 5 | opabssxp 4793 |
. . 3
| |
| 6 | 4, 5 | eqsstri 3256 |
. 2
|
| 7 | 3, 6 | ssexi 4222 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-opab 4146 df-iom 4683 df-xp 4725 df-ni 7491 df-enq 7534 |
| This theorem is referenced by: 1nq 7553 addpipqqs 7557 mulpipqqs 7560 ordpipqqs 7561 addclnq 7562 mulclnq 7563 dmaddpq 7566 dmmulpq 7567 recexnq 7577 ltexnqq 7595 prarloclemarch 7605 prarloclemarch2 7606 nnnq 7609 nqpnq0nq 7640 prarloclemlt 7680 prarloclemlo 7681 prarloclemcalc 7689 nqprm 7729 |
| Copyright terms: Public domain | W3C validator |