ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqex Unicode version

Theorem enqex 7475
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
enqex  |-  ~Q  e.  _V

Proof of Theorem enqex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 niex 7427 . . . 4  |-  N.  e.  _V
21, 1xpex 4791 . . 3  |-  ( N. 
X.  N. )  e.  _V
32, 2xpex 4791 . 2  |-  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  e.  _V
4 df-enq 7462 . . 3  |-  ~Q  =  { <. x ,  y
>.  |  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
5 opabssxp 4750 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
64, 5eqsstri 3225 . 2  |-  ~Q  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
73, 6ssexi 4183 1  |-  ~Q  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   <.cop 3636   {copab 4105    X. cxp 4674  (class class class)co 5946   N.cnpi 7387    .N cmi 7389    ~Q ceq 7394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-opab 4107  df-iom 4640  df-xp 4682  df-ni 7419  df-enq 7462
This theorem is referenced by:  1nq  7481  addpipqqs  7485  mulpipqqs  7488  ordpipqqs  7489  addclnq  7490  mulclnq  7491  dmaddpq  7494  dmmulpq  7495  recexnq  7505  ltexnqq  7523  prarloclemarch  7533  prarloclemarch2  7534  nnnq  7537  nqpnq0nq  7568  prarloclemlt  7608  prarloclemlo  7609  prarloclemcalc  7617  nqprm  7657
  Copyright terms: Public domain W3C validator