| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enqex | Unicode version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) |
| Ref | Expression |
|---|---|
| enqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niex 7427 |
. . . 4
| |
| 2 | 1, 1 | xpex 4791 |
. . 3
|
| 3 | 2, 2 | xpex 4791 |
. 2
|
| 4 | df-enq 7462 |
. . 3
| |
| 5 | opabssxp 4750 |
. . 3
| |
| 6 | 4, 5 | eqsstri 3225 |
. 2
|
| 7 | 3, 6 | ssexi 4183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-opab 4107 df-iom 4640 df-xp 4682 df-ni 7419 df-enq 7462 |
| This theorem is referenced by: 1nq 7481 addpipqqs 7485 mulpipqqs 7488 ordpipqqs 7489 addclnq 7490 mulclnq 7491 dmaddpq 7494 dmmulpq 7495 recexnq 7505 ltexnqq 7523 prarloclemarch 7533 prarloclemarch2 7534 nnnq 7537 nqpnq0nq 7568 prarloclemlt 7608 prarloclemlo 7609 prarloclemcalc 7617 nqprm 7657 |
| Copyright terms: Public domain | W3C validator |