ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqer Unicode version

Theorem enqer 7280
Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Assertion
Ref Expression
enqer  |-  ~Q  Er  ( N.  X.  N. )

Proof of Theorem enqer
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq 7269 . 2  |-  ~Q  =  { <. x ,  y
>.  |  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
2 mulcompig 7253 . 2  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
3 mulclpi 7250 . 2  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
4 mulasspig 7254 . 2  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
5 mulcanpig 7257 . . 3  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  =  ( x  .N  z )  <->  y  =  z ) )
65biimpd 143 . 2  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  =  ( x  .N  z )  -> 
y  =  z ) )
71, 2, 3, 4, 6ecopoverg 6583 1  |-  ~Q  Er  ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    /\ w3a 963    = wceq 1335    e. wcel 2128    X. cxp 4586  (class class class)co 5826    Er wer 6479   N.cnpi 7194    .N cmi 7196    ~Q ceq 7201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-iord 4328  df-on 4330  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-irdg 6319  df-oadd 6369  df-omul 6370  df-er 6482  df-ni 7226  df-mi 7228  df-enq 7269
This theorem is referenced by:  enqeceq  7281  0nnq  7286  addpipqqs  7292  mulpipqqs  7295  ordpipqqs  7296  mulcanenqec  7308
  Copyright terms: Public domain W3C validator