HomeHome Intuitionistic Logic Explorer
Theorem List (p. 76 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7501-7600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmpvlu 7501* Value of multiplication on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
 ) } >. )
 
Theoremdmplp 7502 Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.)
 |- 
 dom  +P.  =  ( P. 
 X.  P. )
 
Theoremdmmp 7503 Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.)
 |- 
 dom  .P.  =  ( P. 
 X.  P. )
 
Theoremnqprm 7504* A cut produced from a rational is inhabited. Lemma for nqprlu 7509. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  ( E. q  e. 
 Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x } ) )
 
Theoremnqprrnd 7505* A cut produced from a rational is rounded. Lemma for nqprlu 7509. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  ( A. q  e. 
 Q.  ( q  e. 
 { x  |  x  <Q  A }  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
 ) )  /\  A. r  e.  Q.  (
 r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
 q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) ) )
 
Theoremnqprdisj 7506* A cut produced from a rational is disjoint. Lemma for nqprlu 7509. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e. 
 { x  |  A  <Q  x } ) )
 
Theoremnqprloc 7507* A cut produced from a rational is located. Lemma for nqprlu 7509. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
 ) ) )
 
Theoremnqprxx 7508* The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  -> 
 <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
 
Theoremnqprlu 7509* The canonical embedding of the rationals into the reals. (Contributed by Jim Kingdon, 24-Jun-2020.)
 |-  ( A  e.  Q.  -> 
 <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
 
Theoremrecnnpr 7510* The reciprocal of a positive integer, as a positive real. (Contributed by Jim Kingdon, 27-Feb-2021.)
 |-  ( A  e.  N.  -> 
 <. { l  |  l 
 <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  u } >.  e. 
 P. )
 
Theoremltnqex 7511 The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |- 
 { x  |  x  <Q  A }  e.  _V
 
Theoremgtnqex 7512 The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |- 
 { x  |  A  <Q  x }  e.  _V
 
Theoremnqprl 7513* Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by 
<P. (Contributed by Jim Kingdon, 8-Jul-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  <->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B ) )
 
Theoremnqpru 7514* Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by 
<P. (Contributed by Jim Kingdon, 29-Nov-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  <->  B 
 <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )
 
Theoremnnprlu 7515* The canonical embedding of positive integers into the positive reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
 |-  ( A  e.  N.  -> 
 <. { l  |  l 
 <Q  [ <. A ,  1o >. ]  ~Q  } ,  { u  |  [ <. A ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
 
Theorem1pr 7516 The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
 |- 
 1P  e.  P.
 
Theorem1prl 7517 The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  ( 1st `  1P )  =  { x  |  x  <Q  1Q }
 
Theorem1pru 7518 The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  ( 2nd `  1P )  =  { x  |  1Q  <Q  x }
 
Theoremaddnqprlemrl 7519* Lemma for addnqpr 7523. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. ) )
 
Theoremaddnqprlemru 7520* Lemma for addnqpr 7523. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. ) )
 
Theoremaddnqprlemfl 7521* Lemma for addnqpr 7523. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremaddnqprlemfu 7522* Lemma for addnqpr 7523. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. )  C_  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremaddnqpr 7523* Addition of fractions embedded into positive reals. One can either add the fractions as fractions, or embed them into positive reals and add them as positive reals, and get the same result. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >.  =  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremaddnqpr1 7524* Addition of one to a fraction embedded into a positive real. One can either add the fraction one to the fraction, or the positive real one to the positive real, and get the same result. Special case of addnqpr 7523. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  Q.  -> 
 <. { l  |  l 
 <Q  ( A  +Q  1Q ) } ,  { u  |  ( A  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  1P ) )
 
Theoremappdivnq 7525* Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where  A and  B are positive, as well as  C). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  <Q  B 
 /\  C  e.  Q. )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C ) 
 <Q  B ) )
 
Theoremappdiv0nq 7526* Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7525 in which  A is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ( B  e.  Q. 
 /\  C  e.  Q. )  ->  E. m  e.  Q.  ( m  .Q  C ) 
 <Q  B )
 
Theoremprmuloclemcalc 7527 Calculations for prmuloc 7528. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ph  ->  R  <Q  U )   &    |-  ( ph  ->  U 
 <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  ( A  +Q  X )  =  B )   &    |-  ( ph  ->  ( P  .Q  B )  <Q  ( R  .Q  X ) )   &    |-  ( ph  ->  A  e.  Q. )   &    |-  ( ph  ->  B  e.  Q. )   &    |-  ( ph  ->  D  e.  Q. )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  X  e.  Q. )   =>    |-  ( ph  ->  ( U  .Q  A ) 
 <Q  ( D  .Q  B ) )
 
Theoremprmuloc 7528* Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  ->  E. d  e.  Q.  E. u  e.  Q.  (
 d  e.  L  /\  u  e.  U  /\  ( u  .Q  A ) 
 <Q  ( d  .Q  B ) ) )
 
Theoremprmuloc2 7529* Positive reals are multiplicatively located. This is a variation of prmuloc 7528 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio  B, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U )
 
Theoremmulnqprl 7530 Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H ) 
 ->  X  e.  ( 1st `  ( A  .P.  B ) ) ) )
 
Theoremmulnqpru 7531 Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X 
 ->  X  e.  ( 2nd `  ( A  .P.  B ) ) ) )
 
Theoremmullocprlem 7532 Calculations for mullocpr 7533. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ph  ->  ( A  e.  P.  /\  B  e.  P. ) )   &    |-  ( ph  ->  ( U  .Q  Q )  <Q  ( E  .Q  ( D  .Q  U ) ) )   &    |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) )  <Q  ( T  .Q  ( D  .Q  U ) ) )   &    |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) )  <Q  ( D  .Q  R ) )   &    |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )   &    |-  ( ph  ->  ( D  e.  Q.  /\  U  e.  Q. )
 )   &    |-  ( ph  ->  ( D  e.  ( 1st `  A )  /\  U  e.  ( 2nd `  A ) ) )   &    |-  ( ph  ->  ( E  e.  Q. 
 /\  T  e.  Q. ) )   =>    |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
 
Theoremmullocpr 7533* Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both  A and  B are positive, not just  A). (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
 
Theoremmulclpr 7534 Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  e.  P. )
 
Theoremmulnqprlemrl 7535* Lemma for mulnqpr 7539. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. ) )
 
Theoremmulnqprlemru 7536* Lemma for mulnqpr 7539. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. ) )
 
Theoremmulnqprlemfl 7537* Lemma for mulnqpr 7539. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremmulnqprlemfu 7538* Lemma for mulnqpr 7539. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. )  C_  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremmulnqpr 7539* Multiplication of fractions embedded into positive reals. One can either multiply the fractions as fractions, or embed them into positive reals and multiply them as positive reals, and get the same result. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >.  =  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremaddcomprg 7540 Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  +P.  B )  =  ( B 
 +P.  A ) )
 
Theoremaddassprg 7541 Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  +P.  B )  +P.  C )  =  ( A  +P.  ( B  +P.  C ) ) )
 
Theoremmulcomprg 7542 Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  =  ( B 
 .P.  A ) )
 
Theoremmulassprg 7543 Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  .P.  B )  .P.  C )  =  ( A  .P.  ( B  .P.  C ) ) )
 
Theoremdistrlem1prl 7544 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
 
Theoremdistrlem1pru 7545 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
 
Theoremdistrlem4prl 7546* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) ) ) )  ->  (
 ( x  .Q  y
 )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem4pru 7547* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  C ) ) ) )  ->  (
 ( x  .Q  y
 )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem5prl 7548 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  (
 ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem5pru 7549 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  (
 ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  C_  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrprg 7550 Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  =  ( ( A 
 .P.  B )  +P.  ( A  .P.  C ) ) )
 
Theoremltprordil 7551 If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
 |-  ( A  <P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )
 
Theorem1idprl 7552 Lemma for 1idpr 7554. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )
 
Theorem1idpru 7553 Lemma for 1idpr 7554. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  1P ) )  =  ( 2nd `  A ) )
 
Theorem1idpr 7554 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.)
 |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  A )
 
Theoremltnqpr 7555* We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  <->  <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremltnqpri 7556* We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
 |-  ( A  <Q  B  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
 
Theoremltpopr 7557 Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7558. (Contributed by Jim Kingdon, 15-Dec-2019.)
 |- 
 <P  Po  P.
 
Theoremltsopr 7558 Positive real 'less than' is a weak linear order (in the sense of df-iso 4282). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
 |- 
 <P  Or  P.
 
Theoremltaddpr 7559 The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A  <P  ( A 
 +P.  B ) )
 
Theoremltexprlemell 7560* Element in lower cut of the constructed difference. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( q  e.  ( 1st `  C )  <->  ( q  e. 
 Q.  /\  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q
 )  e.  ( 1st `  B ) ) ) )
 
Theoremltexprlemelu 7561* Element in upper cut of the constructed difference. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( r  e.  ( 2nd `  C )  <->  ( r  e. 
 Q.  /\  E. y
 ( y  e.  ( 1st `  A )  /\  ( y  +Q  r
 )  e.  ( 2nd `  B ) ) ) )
 
Theoremltexprlemm 7562* Our constructed difference is inhabited. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C )  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
 
Theoremltexprlemopl 7563* The lower cut of our constructed difference is open. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  q  e.  Q.  /\  q  e.  ( 1st `  C ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )
 
Theoremltexprlemlol 7564* The lower cut of our constructed difference is lower. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  q  e.  Q. )  ->  ( E. r  e.  Q.  ( q  <Q  r 
 /\  r  e.  ( 1st `  C ) ) 
 ->  q  e.  ( 1st `  C ) ) )
 
Theoremltexprlemopu 7565* The upper cut of our constructed difference is open. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  r  e.  Q.  /\  r  e.  ( 2nd `  C ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
 
Theoremltexprlemupu 7566* The upper cut of our constructed difference is upper. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  r  e.  Q. )  ->  ( E. q  e.  Q.  ( q  <Q  r 
 /\  q  e.  ( 2nd `  C ) ) 
 ->  r  e.  ( 2nd `  C ) ) )
 
Theoremltexprlemrnd 7567* Our constructed difference is rounded. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  (
 A. q  e.  Q.  ( q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  C )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) ) )
 
Theoremltexprlemdisj 7568* Our constructed difference is disjoint. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) ) )
 
Theoremltexprlemloc 7569* Our constructed difference is located. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C ) ) ) )
 
Theoremltexprlempr 7570* Our constructed difference is a positive real. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  C  e.  P. )
 
Theoremltexprlemfl 7571* Lemma for ltexpri 7575. One direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( 1st `  ( A  +P.  C ) )  C_  ( 1st `  B )
 )
 
Theoremltexprlemrl 7572* Lemma for ltexpri 7575. Reverse direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  C ) ) )
 
Theoremltexprlemfu 7573* Lemma for ltexpri 7575. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( 2nd `  ( A  +P.  C ) )  C_  ( 2nd `  B )
 )
 
Theoremltexprlemru 7574* Lemma for ltexpri 7575. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( 2nd `  B )  C_  ( 2nd `  ( A  +P.  C ) ) )
 
Theoremltexpri 7575* Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
 |-  ( A  <P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
 
Theoremaddcanprleml 7576 Lemma for addcanprg 7578. (Contributed by Jim Kingdon, 25-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A 
 +P.  B )  =  ( A  +P.  C ) )  ->  ( 1st `  B )  C_  ( 1st `  C ) )
 
Theoremaddcanprlemu 7577 Lemma for addcanprg 7578. (Contributed by Jim Kingdon, 25-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A 
 +P.  B )  =  ( A  +P.  C ) )  ->  ( 2nd `  B )  C_  ( 2nd `  C ) )
 
Theoremaddcanprg 7578 Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  +P.  B )  =  ( A 
 +P.  C )  ->  B  =  C ) )
 
Theoremlteupri 7579* The difference from ltexpri 7575 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
 |-  ( A  <P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
 
Theoremltaprlem 7580 Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
 |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A ) 
 <P  ( C  +P.  B ) ) )
 
Theoremltaprg 7581 Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
 
Theoremprplnqu 7582* Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
 |-  ( ph  ->  X  e.  P. )   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )   =>    |-  ( ph  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q )  =  A )
 
Theoremaddextpr 7583 Strong extensionality of addition (ordering version). This is similar to addext 8529 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( ( A  +P.  B )  <P  ( C  +P.  D )  ->  ( A  <P  C  \/  B  <P  D ) ) )
 
Theoremrecexprlemell 7584* Membership in the lower cut of  B. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( C  e.  ( 1st `  B )  <->  E. y ( C 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) )
 
Theoremrecexprlemelu 7585* Membership in the upper cut of  B. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( C  e.  ( 2nd `  B )  <->  E. y ( y 
 <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A ) ) )
 
Theoremrecexprlemm 7586*  B is inhabited. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( E. q  e. 
 Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemopl 7587* The lower cut of  B is open. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  q  e.  Q.  /\  q  e.  ( 1st `  B ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) )
 
Theoremrecexprlemlol 7588* The lower cut of  B is lower. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  q  e.  Q. )  ->  ( E. r  e.  Q.  ( q  <Q  r 
 /\  r  e.  ( 1st `  B ) ) 
 ->  q  e.  ( 1st `  B ) ) )
 
Theoremrecexprlemopu 7589* The upper cut of  B is open. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  r  e.  Q.  /\  r  e.  ( 2nd `  B ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemupu 7590* The upper cut of  B is upper. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  r  e.  Q. )  ->  ( E. q  e.  Q.  ( q  <Q  r 
 /\  q  e.  ( 2nd `  B ) ) 
 ->  r  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemrnd 7591*  B is rounded. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( A. q  e. 
 Q.  ( q  e.  ( 1st `  B ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) ) )
 
Theoremrecexprlemdisj 7592*  B is disjoint. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemloc 7593*  B is located. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) ) )
 
Theoremrecexprlempr 7594*  B is a positive real. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  B  e.  P. )
 
Theoremrecexprlem1ssl 7595* The lower cut of one is a subset of the lower cut of  A  .P.  B. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
 
Theoremrecexprlem1ssu 7596* The upper cut of one is a subset of the upper cut of  A  .P.  B. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
 
Theoremrecexprlemss1l 7597* The lower cut of  A  .P.  B is a subset of the lower cut of one. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) ) 
 C_  ( 1st `  1P ) )
 
Theoremrecexprlemss1u 7598* The upper cut of  A  .P.  B is a subset of the upper cut of one. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) ) 
 C_  ( 2nd `  1P ) )
 
Theoremrecexprlemex 7599*  B is the reciprocal of  A. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
 
Theoremrecexpr 7600* The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
 |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >