ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flval Unicode version

Theorem flval 10228
Description: Value of the floor (greatest integer) function. The floor of  A is the (unique) integer less than or equal to  A whose successor is strictly greater than  A. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
flval  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
Distinct variable group:    x, A

Proof of Theorem flval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 3993 . . . 4  |-  ( y  =  A  ->  (
x  <_  y  <->  x  <_  A ) )
2 breq1 3992 . . . 4  |-  ( y  =  A  ->  (
y  <  ( x  +  1 )  <->  A  <  ( x  +  1 ) ) )
31, 2anbi12d 470 . . 3  |-  ( y  =  A  ->  (
( x  <_  y  /\  y  <  ( x  +  1 ) )  <-> 
( x  <_  A  /\  A  <  ( x  +  1 ) ) ) )
43riotabidv 5811 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  ZZ  (
x  <_  y  /\  y  <  ( x  + 
1 ) ) )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) ) )
5 df-fl 10226 . 2  |-  |_  =  ( y  e.  RR  |->  ( iota_ x  e.  ZZ  ( x  <_  y  /\  y  <  ( x  + 
1 ) ) ) )
6 zex 9221 . . 3  |-  ZZ  e.  _V
7 riotaexg 5813 . . 3  |-  ( ZZ  e.  _V  ->  ( iota_ x  e.  ZZ  (
x  <_  y  /\  y  <  ( x  + 
1 ) ) )  e.  _V )
86, 7ax-mp 5 . 2  |-  ( iota_ x  e.  ZZ  ( x  <_  y  /\  y  <  ( x  +  1 ) ) )  e. 
_V
94, 5, 8fvmpt3i 5576 1  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730   class class class wbr 3989   ` cfv 5198   iota_crio 5808  (class class class)co 5853   RRcr 7773   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955   ZZcz 9212   |_cfl 10224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-neg 8093  df-z 9213  df-fl 10226
This theorem is referenced by:  flqcl  10229  flapcl  10231  flqlelt  10232  flqbi  10246
  Copyright terms: Public domain W3C validator