ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flval Unicode version

Theorem flval 10437
Description: Value of the floor (greatest integer) function. The floor of  A is the (unique) integer less than or equal to  A whose successor is strictly greater than  A. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
flval  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
Distinct variable group:    x, A

Proof of Theorem flval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 4055 . . . 4  |-  ( y  =  A  ->  (
x  <_  y  <->  x  <_  A ) )
2 breq1 4054 . . . 4  |-  ( y  =  A  ->  (
y  <  ( x  +  1 )  <->  A  <  ( x  +  1 ) ) )
31, 2anbi12d 473 . . 3  |-  ( y  =  A  ->  (
( x  <_  y  /\  y  <  ( x  +  1 ) )  <-> 
( x  <_  A  /\  A  <  ( x  +  1 ) ) ) )
43riotabidv 5914 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  ZZ  (
x  <_  y  /\  y  <  ( x  + 
1 ) ) )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) ) )
5 df-fl 10435 . 2  |-  |_  =  ( y  e.  RR  |->  ( iota_ x  e.  ZZ  ( x  <_  y  /\  y  <  ( x  + 
1 ) ) ) )
6 zex 9401 . . 3  |-  ZZ  e.  _V
7 riotaexg 5916 . . 3  |-  ( ZZ  e.  _V  ->  ( iota_ x  e.  ZZ  (
x  <_  y  /\  y  <  ( x  + 
1 ) ) )  e.  _V )
86, 7ax-mp 5 . 2  |-  ( iota_ x  e.  ZZ  ( x  <_  y  /\  y  <  ( x  +  1 ) ) )  e. 
_V
94, 5, 8fvmpt3i 5672 1  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773   class class class wbr 4051   ` cfv 5280   iota_crio 5911  (class class class)co 5957   RRcr 7944   1c1 7946    + caddc 7948    < clt 8127    <_ cle 8128   ZZcz 9392   |_cfl 10433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-neg 8266  df-z 9393  df-fl 10435
This theorem is referenced by:  flqcl  10438  flapcl  10440  flqlelt  10441  flqbi  10455
  Copyright terms: Public domain W3C validator