ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flval Unicode version

Theorem flval 10487
Description: Value of the floor (greatest integer) function. The floor of  A is the (unique) integer less than or equal to  A whose successor is strictly greater than  A. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
flval  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
Distinct variable group:    x, A

Proof of Theorem flval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 4086 . . . 4  |-  ( y  =  A  ->  (
x  <_  y  <->  x  <_  A ) )
2 breq1 4085 . . . 4  |-  ( y  =  A  ->  (
y  <  ( x  +  1 )  <->  A  <  ( x  +  1 ) ) )
31, 2anbi12d 473 . . 3  |-  ( y  =  A  ->  (
( x  <_  y  /\  y  <  ( x  +  1 ) )  <-> 
( x  <_  A  /\  A  <  ( x  +  1 ) ) ) )
43riotabidv 5955 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  ZZ  (
x  <_  y  /\  y  <  ( x  + 
1 ) ) )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) ) )
5 df-fl 10485 . 2  |-  |_  =  ( y  e.  RR  |->  ( iota_ x  e.  ZZ  ( x  <_  y  /\  y  <  ( x  + 
1 ) ) ) )
6 zex 9451 . . 3  |-  ZZ  e.  _V
7 riotaexg 5957 . . 3  |-  ( ZZ  e.  _V  ->  ( iota_ x  e.  ZZ  (
x  <_  y  /\  y  <  ( x  + 
1 ) ) )  e.  _V )
86, 7ax-mp 5 . 2  |-  ( iota_ x  e.  ZZ  ( x  <_  y  /\  y  <  ( x  +  1 ) ) )  e. 
_V
94, 5, 8fvmpt3i 5713 1  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   class class class wbr 4082   ` cfv 5317   iota_crio 5952  (class class class)co 6000   RRcr 7994   1c1 7996    + caddc 7998    < clt 8177    <_ cle 8178   ZZcz 9442   |_cfl 10483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-neg 8316  df-z 9443  df-fl 10485
This theorem is referenced by:  flqcl  10488  flapcl  10490  flqlelt  10491  flqbi  10505
  Copyright terms: Public domain W3C validator