ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqcl Unicode version

Theorem flqcl 10208
Description: The floor (greatest integer) function yields an integer when applied to a rational (closure law). For a similar closure law for real numbers apart from any integer, see flapcl 10210. (Contributed by Jim Kingdon, 8-Oct-2021.)
Assertion
Ref Expression
flqcl  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )

Proof of Theorem flqcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qre 9563 . . 3  |-  ( A  e.  QQ  ->  A  e.  RR )
2 flval 10207 . . 3  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
31, 2syl 14 . 2  |-  ( A  e.  QQ  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
4 qbtwnz 10187 . . 3  |-  ( A  e.  QQ  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
5 riotacl 5812 . . 3  |-  ( E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  -> 
( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  e.  ZZ )
64, 5syl 14 . 2  |-  ( A  e.  QQ  ->  ( iota_ x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )  e.  ZZ )
73, 6eqeltrd 2243 1  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   E!wreu 2446   class class class wbr 3982   ` cfv 5188   iota_crio 5797  (class class class)co 5842   RRcr 7752   1c1 7754    + caddc 7756    < clt 7933    <_ cle 7934   ZZcz 9191   QQcq 9557   |_cfl 10203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205
This theorem is referenced by:  flqlelt  10211  flqcld  10212  qfraclt1  10215  qfracge0  10216  flqidm  10220  flqidz  10221  flqge0nn0  10228  flqge1nn  10229  flqaddz  10232  flqzadd  10233  flqmulnn0  10234  ceilqval  10241  flqleceil  10252  flqeqceilz  10253  intqfrac2  10254  flqdiv  10256  modqfrac  10272  flqmod  10273  intqfrac  10274  modqmulnn  10277
  Copyright terms: Public domain W3C validator