ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-fl Unicode version

Theorem ex-fl 15661
Description: Example for df-fl 10413. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  /\  ( |_ `  -u ( 3  / 
2 ) )  = 
-u 2 )

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 8071 . . . 4  |-  1  e.  RR
2 3re 9110 . . . . 5  |-  3  e.  RR
32rehalfcli 9286 . . . 4  |-  ( 3  /  2 )  e.  RR
4 2cn 9107 . . . . . . 7  |-  2  e.  CC
54mullidi 8075 . . . . . 6  |-  ( 1  x.  2 )  =  2
6 2lt3 9207 . . . . . 6  |-  2  <  3
75, 6eqbrtri 4065 . . . . 5  |-  ( 1  x.  2 )  <  3
8 2pos 9127 . . . . . 6  |-  0  <  2
9 2re 9106 . . . . . . 7  |-  2  e.  RR
101, 2, 9ltmuldivi 8995 . . . . . 6  |-  ( 0  <  2  ->  (
( 1  x.  2 )  <  3  <->  1  <  ( 3  / 
2 ) ) )
118, 10ax-mp 5 . . . . 5  |-  ( ( 1  x.  2 )  <  3  <->  1  <  ( 3  /  2 ) )
127, 11mpbi 145 . . . 4  |-  1  <  ( 3  /  2
)
131, 3, 12ltleii 8175 . . 3  |-  1  <_  ( 3  /  2
)
14 3lt4 9209 . . . . . 6  |-  3  <  4
15 2t2e4 9191 . . . . . 6  |-  ( 2  x.  2 )  =  4
1614, 15breqtrri 4071 . . . . 5  |-  3  <  ( 2  x.  2 )
179, 8pm3.2i 272 . . . . . 6  |-  ( 2  e.  RR  /\  0  <  2 )
18 ltdivmul 8949 . . . . . 6  |-  ( ( 3  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 3  /  2 )  <  2  <->  3  <  (
2  x.  2 ) ) )
192, 9, 17, 18mp3an 1350 . . . . 5  |-  ( ( 3  /  2 )  <  2  <->  3  <  ( 2  x.  2 ) )
2016, 19mpbir 146 . . . 4  |-  ( 3  /  2 )  <  2
21 df-2 9095 . . . 4  |-  2  =  ( 1  +  1 )
2220, 21breqtri 4069 . . 3  |-  ( 3  /  2 )  < 
( 1  +  1 )
23 3z 9401 . . . . 5  |-  3  e.  ZZ
24 2nn 9198 . . . . 5  |-  2  e.  NN
25 znq 9745 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  NN )  ->  ( 3  /  2
)  e.  QQ )
2623, 24, 25mp2an 426 . . . 4  |-  ( 3  /  2 )  e.  QQ
27 1z 9398 . . . 4  |-  1  e.  ZZ
28 flqbi 10433 . . . 4  |-  ( ( ( 3  /  2
)  e.  QQ  /\  1  e.  ZZ )  ->  ( ( |_ `  ( 3  /  2
) )  =  1  <-> 
( 1  <_  (
3  /  2 )  /\  ( 3  / 
2 )  <  (
1  +  1 ) ) ) )
2926, 27, 28mp2an 426 . . 3  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  <->  ( 1  <_  ( 3  / 
2 )  /\  (
3  /  2 )  <  ( 1  +  1 ) ) )
3013, 22, 29mpbir2an 945 . 2  |-  ( |_
`  ( 3  / 
2 ) )  =  1
319renegcli 8334 . . . 4  |-  -u 2  e.  RR
323renegcli 8334 . . . 4  |-  -u (
3  /  2 )  e.  RR
333, 9ltnegi 8566 . . . . 5  |-  ( ( 3  /  2 )  <  2  <->  -u 2  <  -u ( 3  /  2
) )
3420, 33mpbi 145 . . . 4  |-  -u 2  <  -u ( 3  / 
2 )
3531, 32, 34ltleii 8175 . . 3  |-  -u 2  <_ 
-u ( 3  / 
2 )
364negcli 8340 . . . . . . 7  |-  -u 2  e.  CC
37 ax-1cn 8018 . . . . . . 7  |-  1  e.  CC
38 negdi2 8330 . . . . . . 7  |-  ( (
-u 2  e.  CC  /\  1  e.  CC )  ->  -u ( -u 2  +  1 )  =  ( -u -u 2  -  1 ) )
3936, 37, 38mp2an 426 . . . . . 6  |-  -u ( -u 2  +  1 )  =  ( -u -u 2  -  1 )
404negnegi 8342 . . . . . . 7  |-  -u -u 2  =  2
4140oveq1i 5954 . . . . . 6  |-  ( -u -u 2  -  1 )  =  ( 2  -  1 )
4239, 41eqtri 2226 . . . . 5  |-  -u ( -u 2  +  1 )  =  ( 2  -  1 )
43 2m1e1 9154 . . . . . 6  |-  ( 2  -  1 )  =  1
4443, 12eqbrtri 4065 . . . . 5  |-  ( 2  -  1 )  < 
( 3  /  2
)
4542, 44eqbrtri 4065 . . . 4  |-  -u ( -u 2  +  1 )  <  ( 3  / 
2 )
4631, 1readdcli 8085 . . . . 5  |-  ( -u
2  +  1 )  e.  RR
4746, 3ltnegcon1i 8572 . . . 4  |-  ( -u ( -u 2  +  1 )  <  ( 3  /  2 )  <->  -u ( 3  /  2 )  < 
( -u 2  +  1 ) )
4845, 47mpbi 145 . . 3  |-  -u (
3  /  2 )  <  ( -u 2  +  1 )
49 qnegcl 9757 . . . . 5  |-  ( ( 3  /  2 )  e.  QQ  ->  -u (
3  /  2 )  e.  QQ )
5026, 49ax-mp 5 . . . 4  |-  -u (
3  /  2 )  e.  QQ
51 2z 9400 . . . . 5  |-  2  e.  ZZ
52 znegcl 9403 . . . . 5  |-  ( 2  e.  ZZ  ->  -u 2  e.  ZZ )
5351, 52ax-mp 5 . . . 4  |-  -u 2  e.  ZZ
54 flqbi 10433 . . . 4  |-  ( (
-u ( 3  / 
2 )  e.  QQ  /\  -u 2  e.  ZZ )  ->  ( ( |_
`  -u ( 3  / 
2 ) )  = 
-u 2  <->  ( -u 2  <_ 
-u ( 3  / 
2 )  /\  -u (
3  /  2 )  <  ( -u 2  +  1 ) ) ) )
5550, 53, 54mp2an 426 . . 3  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  <->  (
-u 2  <_  -u (
3  /  2 )  /\  -u ( 3  / 
2 )  <  ( -u 2  +  1 ) ) )
5635, 48, 55mpbir2an 945 . 2  |-  ( |_
`  -u ( 3  / 
2 ) )  = 
-u 2
5730, 56pm3.2i 272 1  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  /\  ( |_ `  -u ( 3  / 
2 ) )  = 
-u 2 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243   -ucneg 8244    / cdiv 8745   NNcn 9036   2c2 9087   3c3 9088   4c4 9089   ZZcz 9372   QQcq 9740   |_cfl 10411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-q 9741  df-rp 9776  df-fl 10413
This theorem is referenced by:  ex-ceil  15662
  Copyright terms: Public domain W3C validator