ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-fl Unicode version

Theorem ex-fl 15861
Description: Example for df-fl 10450. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  /\  ( |_ `  -u ( 3  / 
2 ) )  = 
-u 2 )

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 8106 . . . 4  |-  1  e.  RR
2 3re 9145 . . . . 5  |-  3  e.  RR
32rehalfcli 9321 . . . 4  |-  ( 3  /  2 )  e.  RR
4 2cn 9142 . . . . . . 7  |-  2  e.  CC
54mullidi 8110 . . . . . 6  |-  ( 1  x.  2 )  =  2
6 2lt3 9242 . . . . . 6  |-  2  <  3
75, 6eqbrtri 4080 . . . . 5  |-  ( 1  x.  2 )  <  3
8 2pos 9162 . . . . . 6  |-  0  <  2
9 2re 9141 . . . . . . 7  |-  2  e.  RR
101, 2, 9ltmuldivi 9030 . . . . . 6  |-  ( 0  <  2  ->  (
( 1  x.  2 )  <  3  <->  1  <  ( 3  / 
2 ) ) )
118, 10ax-mp 5 . . . . 5  |-  ( ( 1  x.  2 )  <  3  <->  1  <  ( 3  /  2 ) )
127, 11mpbi 145 . . . 4  |-  1  <  ( 3  /  2
)
131, 3, 12ltleii 8210 . . 3  |-  1  <_  ( 3  /  2
)
14 3lt4 9244 . . . . . 6  |-  3  <  4
15 2t2e4 9226 . . . . . 6  |-  ( 2  x.  2 )  =  4
1614, 15breqtrri 4086 . . . . 5  |-  3  <  ( 2  x.  2 )
179, 8pm3.2i 272 . . . . . 6  |-  ( 2  e.  RR  /\  0  <  2 )
18 ltdivmul 8984 . . . . . 6  |-  ( ( 3  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 3  /  2 )  <  2  <->  3  <  (
2  x.  2 ) ) )
192, 9, 17, 18mp3an 1350 . . . . 5  |-  ( ( 3  /  2 )  <  2  <->  3  <  ( 2  x.  2 ) )
2016, 19mpbir 146 . . . 4  |-  ( 3  /  2 )  <  2
21 df-2 9130 . . . 4  |-  2  =  ( 1  +  1 )
2220, 21breqtri 4084 . . 3  |-  ( 3  /  2 )  < 
( 1  +  1 )
23 3z 9436 . . . . 5  |-  3  e.  ZZ
24 2nn 9233 . . . . 5  |-  2  e.  NN
25 znq 9780 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  NN )  ->  ( 3  /  2
)  e.  QQ )
2623, 24, 25mp2an 426 . . . 4  |-  ( 3  /  2 )  e.  QQ
27 1z 9433 . . . 4  |-  1  e.  ZZ
28 flqbi 10470 . . . 4  |-  ( ( ( 3  /  2
)  e.  QQ  /\  1  e.  ZZ )  ->  ( ( |_ `  ( 3  /  2
) )  =  1  <-> 
( 1  <_  (
3  /  2 )  /\  ( 3  / 
2 )  <  (
1  +  1 ) ) ) )
2926, 27, 28mp2an 426 . . 3  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  <->  ( 1  <_  ( 3  / 
2 )  /\  (
3  /  2 )  <  ( 1  +  1 ) ) )
3013, 22, 29mpbir2an 945 . 2  |-  ( |_
`  ( 3  / 
2 ) )  =  1
319renegcli 8369 . . . 4  |-  -u 2  e.  RR
323renegcli 8369 . . . 4  |-  -u (
3  /  2 )  e.  RR
333, 9ltnegi 8601 . . . . 5  |-  ( ( 3  /  2 )  <  2  <->  -u 2  <  -u ( 3  /  2
) )
3420, 33mpbi 145 . . . 4  |-  -u 2  <  -u ( 3  / 
2 )
3531, 32, 34ltleii 8210 . . 3  |-  -u 2  <_ 
-u ( 3  / 
2 )
364negcli 8375 . . . . . . 7  |-  -u 2  e.  CC
37 ax-1cn 8053 . . . . . . 7  |-  1  e.  CC
38 negdi2 8365 . . . . . . 7  |-  ( (
-u 2  e.  CC  /\  1  e.  CC )  ->  -u ( -u 2  +  1 )  =  ( -u -u 2  -  1 ) )
3936, 37, 38mp2an 426 . . . . . 6  |-  -u ( -u 2  +  1 )  =  ( -u -u 2  -  1 )
404negnegi 8377 . . . . . . 7  |-  -u -u 2  =  2
4140oveq1i 5977 . . . . . 6  |-  ( -u -u 2  -  1 )  =  ( 2  -  1 )
4239, 41eqtri 2228 . . . . 5  |-  -u ( -u 2  +  1 )  =  ( 2  -  1 )
43 2m1e1 9189 . . . . . 6  |-  ( 2  -  1 )  =  1
4443, 12eqbrtri 4080 . . . . 5  |-  ( 2  -  1 )  < 
( 3  /  2
)
4542, 44eqbrtri 4080 . . . 4  |-  -u ( -u 2  +  1 )  <  ( 3  / 
2 )
4631, 1readdcli 8120 . . . . 5  |-  ( -u
2  +  1 )  e.  RR
4746, 3ltnegcon1i 8607 . . . 4  |-  ( -u ( -u 2  +  1 )  <  ( 3  /  2 )  <->  -u ( 3  /  2 )  < 
( -u 2  +  1 ) )
4845, 47mpbi 145 . . 3  |-  -u (
3  /  2 )  <  ( -u 2  +  1 )
49 qnegcl 9792 . . . . 5  |-  ( ( 3  /  2 )  e.  QQ  ->  -u (
3  /  2 )  e.  QQ )
5026, 49ax-mp 5 . . . 4  |-  -u (
3  /  2 )  e.  QQ
51 2z 9435 . . . . 5  |-  2  e.  ZZ
52 znegcl 9438 . . . . 5  |-  ( 2  e.  ZZ  ->  -u 2  e.  ZZ )
5351, 52ax-mp 5 . . . 4  |-  -u 2  e.  ZZ
54 flqbi 10470 . . . 4  |-  ( (
-u ( 3  / 
2 )  e.  QQ  /\  -u 2  e.  ZZ )  ->  ( ( |_
`  -u ( 3  / 
2 ) )  = 
-u 2  <->  ( -u 2  <_ 
-u ( 3  / 
2 )  /\  -u (
3  /  2 )  <  ( -u 2  +  1 ) ) ) )
5550, 53, 54mp2an 426 . . 3  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  <->  (
-u 2  <_  -u (
3  /  2 )  /\  -u ( 3  / 
2 )  <  ( -u 2  +  1 ) ) )
5635, 48, 55mpbir2an 945 . 2  |-  ( |_
`  -u ( 3  / 
2 ) )  = 
-u 2
5730, 56pm3.2i 272 1  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  /\  ( |_ `  -u ( 3  / 
2 ) )  = 
-u 2 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278   -ucneg 8279    / cdiv 8780   NNcn 9071   2c2 9122   3c3 9123   4c4 9124   ZZcz 9407   QQcq 9775   |_cfl 10448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-q 9776  df-rp 9811  df-fl 10450
This theorem is referenced by:  ex-ceil  15862
  Copyright terms: Public domain W3C validator