| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-fl | Unicode version | ||
| Description: Example for df-fl 10411. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-fl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8070 |
. . . 4
| |
| 2 | 3re 9109 |
. . . . 5
| |
| 3 | 2 | rehalfcli 9285 |
. . . 4
|
| 4 | 2cn 9106 |
. . . . . . 7
| |
| 5 | 4 | mullidi 8074 |
. . . . . 6
|
| 6 | 2lt3 9206 |
. . . . . 6
| |
| 7 | 5, 6 | eqbrtri 4064 |
. . . . 5
|
| 8 | 2pos 9126 |
. . . . . 6
| |
| 9 | 2re 9105 |
. . . . . . 7
| |
| 10 | 1, 2, 9 | ltmuldivi 8994 |
. . . . . 6
|
| 11 | 8, 10 | ax-mp 5 |
. . . . 5
|
| 12 | 7, 11 | mpbi 145 |
. . . 4
|
| 13 | 1, 3, 12 | ltleii 8174 |
. . 3
|
| 14 | 3lt4 9208 |
. . . . . 6
| |
| 15 | 2t2e4 9190 |
. . . . . 6
| |
| 16 | 14, 15 | breqtrri 4070 |
. . . . 5
|
| 17 | 9, 8 | pm3.2i 272 |
. . . . . 6
|
| 18 | ltdivmul 8948 |
. . . . . 6
| |
| 19 | 2, 9, 17, 18 | mp3an 1349 |
. . . . 5
|
| 20 | 16, 19 | mpbir 146 |
. . . 4
|
| 21 | df-2 9094 |
. . . 4
| |
| 22 | 20, 21 | breqtri 4068 |
. . 3
|
| 23 | 3z 9400 |
. . . . 5
| |
| 24 | 2nn 9197 |
. . . . 5
| |
| 25 | znq 9744 |
. . . . 5
| |
| 26 | 23, 24, 25 | mp2an 426 |
. . . 4
|
| 27 | 1z 9397 |
. . . 4
| |
| 28 | flqbi 10431 |
. . . 4
| |
| 29 | 26, 27, 28 | mp2an 426 |
. . 3
|
| 30 | 13, 22, 29 | mpbir2an 944 |
. 2
|
| 31 | 9 | renegcli 8333 |
. . . 4
|
| 32 | 3 | renegcli 8333 |
. . . 4
|
| 33 | 3, 9 | ltnegi 8565 |
. . . . 5
|
| 34 | 20, 33 | mpbi 145 |
. . . 4
|
| 35 | 31, 32, 34 | ltleii 8174 |
. . 3
|
| 36 | 4 | negcli 8339 |
. . . . . . 7
|
| 37 | ax-1cn 8017 |
. . . . . . 7
| |
| 38 | negdi2 8329 |
. . . . . . 7
| |
| 39 | 36, 37, 38 | mp2an 426 |
. . . . . 6
|
| 40 | 4 | negnegi 8341 |
. . . . . . 7
|
| 41 | 40 | oveq1i 5953 |
. . . . . 6
|
| 42 | 39, 41 | eqtri 2225 |
. . . . 5
|
| 43 | 2m1e1 9153 |
. . . . . 6
| |
| 44 | 43, 12 | eqbrtri 4064 |
. . . . 5
|
| 45 | 42, 44 | eqbrtri 4064 |
. . . 4
|
| 46 | 31, 1 | readdcli 8084 |
. . . . 5
|
| 47 | 46, 3 | ltnegcon1i 8571 |
. . . 4
|
| 48 | 45, 47 | mpbi 145 |
. . 3
|
| 49 | qnegcl 9756 |
. . . . 5
| |
| 50 | 26, 49 | ax-mp 5 |
. . . 4
|
| 51 | 2z 9399 |
. . . . 5
| |
| 52 | znegcl 9402 |
. . . . 5
| |
| 53 | 51, 52 | ax-mp 5 |
. . . 4
|
| 54 | flqbi 10431 |
. . . 4
| |
| 55 | 50, 53, 54 | mp2an 426 |
. . 3
|
| 56 | 35, 48, 55 | mpbir2an 944 |
. 2
|
| 57 | 30, 56 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-q 9740 df-rp 9775 df-fl 10411 |
| This theorem is referenced by: ex-ceil 15624 |
| Copyright terms: Public domain | W3C validator |