| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-fl | Unicode version | ||
| Description: Example for df-fl 10485. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-fl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8141 |
. . . 4
| |
| 2 | 3re 9180 |
. . . . 5
| |
| 3 | 2 | rehalfcli 9356 |
. . . 4
|
| 4 | 2cn 9177 |
. . . . . . 7
| |
| 5 | 4 | mullidi 8145 |
. . . . . 6
|
| 6 | 2lt3 9277 |
. . . . . 6
| |
| 7 | 5, 6 | eqbrtri 4103 |
. . . . 5
|
| 8 | 2pos 9197 |
. . . . . 6
| |
| 9 | 2re 9176 |
. . . . . . 7
| |
| 10 | 1, 2, 9 | ltmuldivi 9065 |
. . . . . 6
|
| 11 | 8, 10 | ax-mp 5 |
. . . . 5
|
| 12 | 7, 11 | mpbi 145 |
. . . 4
|
| 13 | 1, 3, 12 | ltleii 8245 |
. . 3
|
| 14 | 3lt4 9279 |
. . . . . 6
| |
| 15 | 2t2e4 9261 |
. . . . . 6
| |
| 16 | 14, 15 | breqtrri 4109 |
. . . . 5
|
| 17 | 9, 8 | pm3.2i 272 |
. . . . . 6
|
| 18 | ltdivmul 9019 |
. . . . . 6
| |
| 19 | 2, 9, 17, 18 | mp3an 1371 |
. . . . 5
|
| 20 | 16, 19 | mpbir 146 |
. . . 4
|
| 21 | df-2 9165 |
. . . 4
| |
| 22 | 20, 21 | breqtri 4107 |
. . 3
|
| 23 | 3z 9471 |
. . . . 5
| |
| 24 | 2nn 9268 |
. . . . 5
| |
| 25 | znq 9815 |
. . . . 5
| |
| 26 | 23, 24, 25 | mp2an 426 |
. . . 4
|
| 27 | 1z 9468 |
. . . 4
| |
| 28 | flqbi 10505 |
. . . 4
| |
| 29 | 26, 27, 28 | mp2an 426 |
. . 3
|
| 30 | 13, 22, 29 | mpbir2an 948 |
. 2
|
| 31 | 9 | renegcli 8404 |
. . . 4
|
| 32 | 3 | renegcli 8404 |
. . . 4
|
| 33 | 3, 9 | ltnegi 8636 |
. . . . 5
|
| 34 | 20, 33 | mpbi 145 |
. . . 4
|
| 35 | 31, 32, 34 | ltleii 8245 |
. . 3
|
| 36 | 4 | negcli 8410 |
. . . . . . 7
|
| 37 | ax-1cn 8088 |
. . . . . . 7
| |
| 38 | negdi2 8400 |
. . . . . . 7
| |
| 39 | 36, 37, 38 | mp2an 426 |
. . . . . 6
|
| 40 | 4 | negnegi 8412 |
. . . . . . 7
|
| 41 | 40 | oveq1i 6010 |
. . . . . 6
|
| 42 | 39, 41 | eqtri 2250 |
. . . . 5
|
| 43 | 2m1e1 9224 |
. . . . . 6
| |
| 44 | 43, 12 | eqbrtri 4103 |
. . . . 5
|
| 45 | 42, 44 | eqbrtri 4103 |
. . . 4
|
| 46 | 31, 1 | readdcli 8155 |
. . . . 5
|
| 47 | 46, 3 | ltnegcon1i 8642 |
. . . 4
|
| 48 | 45, 47 | mpbi 145 |
. . 3
|
| 49 | qnegcl 9827 |
. . . . 5
| |
| 50 | 26, 49 | ax-mp 5 |
. . . 4
|
| 51 | 2z 9470 |
. . . . 5
| |
| 52 | znegcl 9473 |
. . . . 5
| |
| 53 | 51, 52 | ax-mp 5 |
. . . 4
|
| 54 | flqbi 10505 |
. . . 4
| |
| 55 | 50, 53, 54 | mp2an 426 |
. . 3
|
| 56 | 35, 48, 55 | mpbir2an 948 |
. 2
|
| 57 | 30, 56 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-q 9811 df-rp 9846 df-fl 10485 |
| This theorem is referenced by: ex-ceil 16048 |
| Copyright terms: Public domain | W3C validator |