| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-fl | Unicode version | ||
| Description: Example for df-fl 10413. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-fl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8071 |
. . . 4
| |
| 2 | 3re 9110 |
. . . . 5
| |
| 3 | 2 | rehalfcli 9286 |
. . . 4
|
| 4 | 2cn 9107 |
. . . . . . 7
| |
| 5 | 4 | mullidi 8075 |
. . . . . 6
|
| 6 | 2lt3 9207 |
. . . . . 6
| |
| 7 | 5, 6 | eqbrtri 4065 |
. . . . 5
|
| 8 | 2pos 9127 |
. . . . . 6
| |
| 9 | 2re 9106 |
. . . . . . 7
| |
| 10 | 1, 2, 9 | ltmuldivi 8995 |
. . . . . 6
|
| 11 | 8, 10 | ax-mp 5 |
. . . . 5
|
| 12 | 7, 11 | mpbi 145 |
. . . 4
|
| 13 | 1, 3, 12 | ltleii 8175 |
. . 3
|
| 14 | 3lt4 9209 |
. . . . . 6
| |
| 15 | 2t2e4 9191 |
. . . . . 6
| |
| 16 | 14, 15 | breqtrri 4071 |
. . . . 5
|
| 17 | 9, 8 | pm3.2i 272 |
. . . . . 6
|
| 18 | ltdivmul 8949 |
. . . . . 6
| |
| 19 | 2, 9, 17, 18 | mp3an 1350 |
. . . . 5
|
| 20 | 16, 19 | mpbir 146 |
. . . 4
|
| 21 | df-2 9095 |
. . . 4
| |
| 22 | 20, 21 | breqtri 4069 |
. . 3
|
| 23 | 3z 9401 |
. . . . 5
| |
| 24 | 2nn 9198 |
. . . . 5
| |
| 25 | znq 9745 |
. . . . 5
| |
| 26 | 23, 24, 25 | mp2an 426 |
. . . 4
|
| 27 | 1z 9398 |
. . . 4
| |
| 28 | flqbi 10433 |
. . . 4
| |
| 29 | 26, 27, 28 | mp2an 426 |
. . 3
|
| 30 | 13, 22, 29 | mpbir2an 945 |
. 2
|
| 31 | 9 | renegcli 8334 |
. . . 4
|
| 32 | 3 | renegcli 8334 |
. . . 4
|
| 33 | 3, 9 | ltnegi 8566 |
. . . . 5
|
| 34 | 20, 33 | mpbi 145 |
. . . 4
|
| 35 | 31, 32, 34 | ltleii 8175 |
. . 3
|
| 36 | 4 | negcli 8340 |
. . . . . . 7
|
| 37 | ax-1cn 8018 |
. . . . . . 7
| |
| 38 | negdi2 8330 |
. . . . . . 7
| |
| 39 | 36, 37, 38 | mp2an 426 |
. . . . . 6
|
| 40 | 4 | negnegi 8342 |
. . . . . . 7
|
| 41 | 40 | oveq1i 5954 |
. . . . . 6
|
| 42 | 39, 41 | eqtri 2226 |
. . . . 5
|
| 43 | 2m1e1 9154 |
. . . . . 6
| |
| 44 | 43, 12 | eqbrtri 4065 |
. . . . 5
|
| 45 | 42, 44 | eqbrtri 4065 |
. . . 4
|
| 46 | 31, 1 | readdcli 8085 |
. . . . 5
|
| 47 | 46, 3 | ltnegcon1i 8572 |
. . . 4
|
| 48 | 45, 47 | mpbi 145 |
. . 3
|
| 49 | qnegcl 9757 |
. . . . 5
| |
| 50 | 26, 49 | ax-mp 5 |
. . . 4
|
| 51 | 2z 9400 |
. . . . 5
| |
| 52 | znegcl 9403 |
. . . . 5
| |
| 53 | 51, 52 | ax-mp 5 |
. . . 4
|
| 54 | flqbi 10433 |
. . . 4
| |
| 55 | 50, 53, 54 | mp2an 426 |
. . 3
|
| 56 | 35, 48, 55 | mpbir2an 945 |
. 2
|
| 57 | 30, 56 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-q 9741 df-rp 9776 df-fl 10413 |
| This theorem is referenced by: ex-ceil 15662 |
| Copyright terms: Public domain | W3C validator |