ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-fl Unicode version

Theorem ex-fl 14748
Description: Example for df-fl 10283. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  /\  ( |_ `  -u ( 3  / 
2 ) )  = 
-u 2 )

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 7969 . . . 4  |-  1  e.  RR
2 3re 9006 . . . . 5  |-  3  e.  RR
32rehalfcli 9180 . . . 4  |-  ( 3  /  2 )  e.  RR
4 2cn 9003 . . . . . . 7  |-  2  e.  CC
54mullidi 7973 . . . . . 6  |-  ( 1  x.  2 )  =  2
6 2lt3 9102 . . . . . 6  |-  2  <  3
75, 6eqbrtri 4036 . . . . 5  |-  ( 1  x.  2 )  <  3
8 2pos 9023 . . . . . 6  |-  0  <  2
9 2re 9002 . . . . . . 7  |-  2  e.  RR
101, 2, 9ltmuldivi 8892 . . . . . 6  |-  ( 0  <  2  ->  (
( 1  x.  2 )  <  3  <->  1  <  ( 3  / 
2 ) ) )
118, 10ax-mp 5 . . . . 5  |-  ( ( 1  x.  2 )  <  3  <->  1  <  ( 3  /  2 ) )
127, 11mpbi 145 . . . 4  |-  1  <  ( 3  /  2
)
131, 3, 12ltleii 8073 . . 3  |-  1  <_  ( 3  /  2
)
14 3lt4 9104 . . . . . 6  |-  3  <  4
15 2t2e4 9086 . . . . . 6  |-  ( 2  x.  2 )  =  4
1614, 15breqtrri 4042 . . . . 5  |-  3  <  ( 2  x.  2 )
179, 8pm3.2i 272 . . . . . 6  |-  ( 2  e.  RR  /\  0  <  2 )
18 ltdivmul 8846 . . . . . 6  |-  ( ( 3  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 3  /  2 )  <  2  <->  3  <  (
2  x.  2 ) ) )
192, 9, 17, 18mp3an 1347 . . . . 5  |-  ( ( 3  /  2 )  <  2  <->  3  <  ( 2  x.  2 ) )
2016, 19mpbir 146 . . . 4  |-  ( 3  /  2 )  <  2
21 df-2 8991 . . . 4  |-  2  =  ( 1  +  1 )
2220, 21breqtri 4040 . . 3  |-  ( 3  /  2 )  < 
( 1  +  1 )
23 3z 9295 . . . . 5  |-  3  e.  ZZ
24 2nn 9093 . . . . 5  |-  2  e.  NN
25 znq 9637 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  NN )  ->  ( 3  /  2
)  e.  QQ )
2623, 24, 25mp2an 426 . . . 4  |-  ( 3  /  2 )  e.  QQ
27 1z 9292 . . . 4  |-  1  e.  ZZ
28 flqbi 10303 . . . 4  |-  ( ( ( 3  /  2
)  e.  QQ  /\  1  e.  ZZ )  ->  ( ( |_ `  ( 3  /  2
) )  =  1  <-> 
( 1  <_  (
3  /  2 )  /\  ( 3  / 
2 )  <  (
1  +  1 ) ) ) )
2926, 27, 28mp2an 426 . . 3  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  <->  ( 1  <_  ( 3  / 
2 )  /\  (
3  /  2 )  <  ( 1  +  1 ) ) )
3013, 22, 29mpbir2an 943 . 2  |-  ( |_
`  ( 3  / 
2 ) )  =  1
319renegcli 8232 . . . 4  |-  -u 2  e.  RR
323renegcli 8232 . . . 4  |-  -u (
3  /  2 )  e.  RR
333, 9ltnegi 8463 . . . . 5  |-  ( ( 3  /  2 )  <  2  <->  -u 2  <  -u ( 3  /  2
) )
3420, 33mpbi 145 . . . 4  |-  -u 2  <  -u ( 3  / 
2 )
3531, 32, 34ltleii 8073 . . 3  |-  -u 2  <_ 
-u ( 3  / 
2 )
364negcli 8238 . . . . . . 7  |-  -u 2  e.  CC
37 ax-1cn 7917 . . . . . . 7  |-  1  e.  CC
38 negdi2 8228 . . . . . . 7  |-  ( (
-u 2  e.  CC  /\  1  e.  CC )  ->  -u ( -u 2  +  1 )  =  ( -u -u 2  -  1 ) )
3936, 37, 38mp2an 426 . . . . . 6  |-  -u ( -u 2  +  1 )  =  ( -u -u 2  -  1 )
404negnegi 8240 . . . . . . 7  |-  -u -u 2  =  2
4140oveq1i 5898 . . . . . 6  |-  ( -u -u 2  -  1 )  =  ( 2  -  1 )
4239, 41eqtri 2208 . . . . 5  |-  -u ( -u 2  +  1 )  =  ( 2  -  1 )
43 2m1e1 9050 . . . . . 6  |-  ( 2  -  1 )  =  1
4443, 12eqbrtri 4036 . . . . 5  |-  ( 2  -  1 )  < 
( 3  /  2
)
4542, 44eqbrtri 4036 . . . 4  |-  -u ( -u 2  +  1 )  <  ( 3  / 
2 )
4631, 1readdcli 7983 . . . . 5  |-  ( -u
2  +  1 )  e.  RR
4746, 3ltnegcon1i 8469 . . . 4  |-  ( -u ( -u 2  +  1 )  <  ( 3  /  2 )  <->  -u ( 3  /  2 )  < 
( -u 2  +  1 ) )
4845, 47mpbi 145 . . 3  |-  -u (
3  /  2 )  <  ( -u 2  +  1 )
49 qnegcl 9649 . . . . 5  |-  ( ( 3  /  2 )  e.  QQ  ->  -u (
3  /  2 )  e.  QQ )
5026, 49ax-mp 5 . . . 4  |-  -u (
3  /  2 )  e.  QQ
51 2z 9294 . . . . 5  |-  2  e.  ZZ
52 znegcl 9297 . . . . 5  |-  ( 2  e.  ZZ  ->  -u 2  e.  ZZ )
5351, 52ax-mp 5 . . . 4  |-  -u 2  e.  ZZ
54 flqbi 10303 . . . 4  |-  ( (
-u ( 3  / 
2 )  e.  QQ  /\  -u 2  e.  ZZ )  ->  ( ( |_
`  -u ( 3  / 
2 ) )  = 
-u 2  <->  ( -u 2  <_ 
-u ( 3  / 
2 )  /\  -u (
3  /  2 )  <  ( -u 2  +  1 ) ) ) )
5550, 53, 54mp2an 426 . . 3  |-  ( ( |_ `  -u (
3  /  2 ) )  =  -u 2  <->  (
-u 2  <_  -u (
3  /  2 )  /\  -u ( 3  / 
2 )  <  ( -u 2  +  1 ) ) )
5635, 48, 55mpbir2an 943 . 2  |-  ( |_
`  -u ( 3  / 
2 ) )  = 
-u 2
5730, 56pm3.2i 272 1  |-  ( ( |_ `  ( 3  /  2 ) )  =  1  /\  ( |_ `  -u ( 3  / 
2 ) )  = 
-u 2 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   CCcc 7822   RRcr 7823   0cc0 7824   1c1 7825    + caddc 7827    x. cmul 7829    < clt 8005    <_ cle 8006    - cmin 8141   -ucneg 8142    / cdiv 8642   NNcn 8932   2c2 8983   3c3 8984   4c4 8985   ZZcz 9266   QQcq 9632   |_cfl 10281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-q 9633  df-rp 9667  df-fl 10283
This theorem is referenced by:  ex-ceil  14749
  Copyright terms: Public domain W3C validator