| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-fl | Unicode version | ||
| Description: Example for df-fl 10377. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-fl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8042 |
. . . 4
| |
| 2 | 3re 9081 |
. . . . 5
| |
| 3 | 2 | rehalfcli 9257 |
. . . 4
|
| 4 | 2cn 9078 |
. . . . . . 7
| |
| 5 | 4 | mullidi 8046 |
. . . . . 6
|
| 6 | 2lt3 9178 |
. . . . . 6
| |
| 7 | 5, 6 | eqbrtri 4055 |
. . . . 5
|
| 8 | 2pos 9098 |
. . . . . 6
| |
| 9 | 2re 9077 |
. . . . . . 7
| |
| 10 | 1, 2, 9 | ltmuldivi 8966 |
. . . . . 6
|
| 11 | 8, 10 | ax-mp 5 |
. . . . 5
|
| 12 | 7, 11 | mpbi 145 |
. . . 4
|
| 13 | 1, 3, 12 | ltleii 8146 |
. . 3
|
| 14 | 3lt4 9180 |
. . . . . 6
| |
| 15 | 2t2e4 9162 |
. . . . . 6
| |
| 16 | 14, 15 | breqtrri 4061 |
. . . . 5
|
| 17 | 9, 8 | pm3.2i 272 |
. . . . . 6
|
| 18 | ltdivmul 8920 |
. . . . . 6
| |
| 19 | 2, 9, 17, 18 | mp3an 1348 |
. . . . 5
|
| 20 | 16, 19 | mpbir 146 |
. . . 4
|
| 21 | df-2 9066 |
. . . 4
| |
| 22 | 20, 21 | breqtri 4059 |
. . 3
|
| 23 | 3z 9372 |
. . . . 5
| |
| 24 | 2nn 9169 |
. . . . 5
| |
| 25 | znq 9715 |
. . . . 5
| |
| 26 | 23, 24, 25 | mp2an 426 |
. . . 4
|
| 27 | 1z 9369 |
. . . 4
| |
| 28 | flqbi 10397 |
. . . 4
| |
| 29 | 26, 27, 28 | mp2an 426 |
. . 3
|
| 30 | 13, 22, 29 | mpbir2an 944 |
. 2
|
| 31 | 9 | renegcli 8305 |
. . . 4
|
| 32 | 3 | renegcli 8305 |
. . . 4
|
| 33 | 3, 9 | ltnegi 8537 |
. . . . 5
|
| 34 | 20, 33 | mpbi 145 |
. . . 4
|
| 35 | 31, 32, 34 | ltleii 8146 |
. . 3
|
| 36 | 4 | negcli 8311 |
. . . . . . 7
|
| 37 | ax-1cn 7989 |
. . . . . . 7
| |
| 38 | negdi2 8301 |
. . . . . . 7
| |
| 39 | 36, 37, 38 | mp2an 426 |
. . . . . 6
|
| 40 | 4 | negnegi 8313 |
. . . . . . 7
|
| 41 | 40 | oveq1i 5935 |
. . . . . 6
|
| 42 | 39, 41 | eqtri 2217 |
. . . . 5
|
| 43 | 2m1e1 9125 |
. . . . . 6
| |
| 44 | 43, 12 | eqbrtri 4055 |
. . . . 5
|
| 45 | 42, 44 | eqbrtri 4055 |
. . . 4
|
| 46 | 31, 1 | readdcli 8056 |
. . . . 5
|
| 47 | 46, 3 | ltnegcon1i 8543 |
. . . 4
|
| 48 | 45, 47 | mpbi 145 |
. . 3
|
| 49 | qnegcl 9727 |
. . . . 5
| |
| 50 | 26, 49 | ax-mp 5 |
. . . 4
|
| 51 | 2z 9371 |
. . . . 5
| |
| 52 | znegcl 9374 |
. . . . 5
| |
| 53 | 51, 52 | ax-mp 5 |
. . . 4
|
| 54 | flqbi 10397 |
. . . 4
| |
| 55 | 50, 53, 54 | mp2an 426 |
. . 3
|
| 56 | 35, 48, 55 | mpbir2an 944 |
. 2
|
| 57 | 30, 56 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-q 9711 df-rp 9746 df-fl 10377 |
| This theorem is referenced by: ex-ceil 15456 |
| Copyright terms: Public domain | W3C validator |