HomeHome Intuitionistic Logic Explorer
Theorem List (p. 103 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10201-10300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmodlteq 10201 Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N ) ) 
 ->  ( ( I  mod  N )  =  ( J 
 mod  N )  <->  I  =  J ) )
 
Theoremaddmodlteq 10202 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
 
4.6.3  Miscellaneous theorems about integers
 
Theoremfrec2uz0d 10203* The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  ( G `  (/) )  =  C )
 
Theoremfrec2uzzd 10204* The value of  G (see frec2uz0d 10203) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  A )  e. 
 ZZ )
 
Theoremfrec2uzsucd 10205* The value of  G (see frec2uz0d 10203) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `
  A )  +  1 ) )
 
Theoremfrec2uzuzd 10206* The value  G (see frec2uz0d 10203) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  A )  e.  ( ZZ>= `  C )
 )
 
Theoremfrec2uzltd 10207* Less-than relation for  G (see frec2uz0d 10203). (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B ) ) )
 
Theoremfrec2uzlt2d 10208* The mapping  G (see frec2uz0d 10203) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `
  B ) ) )
 
Theoremfrec2uzrand 10209* Range of  G (see frec2uz0d 10203). (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  ran  G  =  ( ZZ>= `  C )
 )
 
Theoremfrec2uzf1od 10210*  G (see frec2uz0d 10203) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  G : om
 -1-1-onto-> ( ZZ>= `  C )
 )
 
Theoremfrec2uzisod 10211*  G (see frec2uz0d 10203) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  G  Isom  _E  ,  <  ( om ,  ( ZZ>= `  C ) ) )
 
Theoremfrecuzrdgrrn 10212* The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 
S. (Contributed by Jim Kingdon, 28-Mar-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ( ph  /\  D  e.  om )  ->  ( R `  D )  e.  ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrec2uzrdg 10213* A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function 
F ( x ,  y ) and initial value  A. This lemma shows that evaluating  R at an element of  om gives an ordered pair whose first element is the index (translated from  om to  ( ZZ>= `  C )). See comment in frec2uz0d 10203 which describes  G and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B ) ) >. )
 
Theoremfrecuzrdgrcl 10214* The function  R (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 1-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  R : om --> ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrecuzrdglem 10215* A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )   =>    |-  ( ph  ->  <. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) )
 >.  e.  ran  R )
 
Theoremfrecuzrdgtcl 10216* The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10203 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 26-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ph  ->  T :
 ( ZZ>= `  C ) --> S )
 
Theoremfrecuzrdg0 10217* Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10203 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 27-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ph  ->  ( T `  C )  =  A )
 
Theoremfrecuzrdgsuc 10218* Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10203 for the description of  G as the mapping from 
om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 28-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C )
 )  ->  ( T `  ( B  +  1 ) )  =  ( B F ( T `
  B ) ) )
 
Theoremfrecuzrdgrclt 10219* The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of  S. Similar to frecuzrdgrcl 10214 except that  S and  T need not be the same. (Contributed by Jim Kingdon, 22-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  R : om --> ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrecuzrdgg 10220* Lemma for other theorems involving the the recursive definition generator on upper integers. Evaluating  R at a natural number gives an ordered pair whose first element is the mapping of that natural number via  G. (Contributed by Jim Kingdon, 23-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  N  e.  om )   &    |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  C )   =>    |-  ( ph  ->  ( 1st `  ( R `  N ) )  =  ( G `  N ) )
 
Theoremfrecuzrdgdomlem 10221* The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C ) )
 
Theoremfrecuzrdgdom 10222* The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C ) )
 
Theoremfrecuzrdgfunlem 10223* The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  Fun  ran  R )
 
Theoremfrecuzrdgfun 10224* The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  Fun  ran  R )
 
Theoremfrecuzrdgtclt 10225* The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ph  ->  P :
 ( ZZ>= `  C ) --> S )
 
Theoremfrecuzrdg0t 10226* Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ph  ->  ( P `  C )  =  A )
 
Theoremfrecuzrdgsuctlem 10227* Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10203 for the description of  G as the mapping from  om to  ( ZZ>= `  C ). (Contributed by Jim Kingdon, 29-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C ) )  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `  B ) ) )
 
Theoremfrecuzrdgsuct 10228* Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C )
 )  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `
  B ) ) )
 
Theoremuzenom 10229 An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  Z  ~~  om )
 
Theoremfrecfzennn 10230 The cardinality of a finite set of sequential integers. (See frec2uz0d 10203 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( N  e.  NN0  ->  ( 1 ... N ) 
 ~~  ( `' G `  N ) )
 
Theoremfrecfzen2 10231 The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( M ... N ) 
 ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
 
Theoremfrechashgf1o 10232  G maps  om one-to-one onto  NN0. (Contributed by Jim Kingdon, 19-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  G : om -1-1-onto-> NN0
 
Theoremfrec2uzled 10233* The mapping  G (see frec2uz0d 10203) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  C_  B  <->  ( G `  A )  <_  ( G `
  B ) ) )
 
Theoremfzfig 10234 A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N )  e.  Fin )
 
Theoremfzfigd 10235 Deduction form of fzfig 10234. (Contributed by Jim Kingdon, 21-May-2020.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M ... N )  e.  Fin )
 
Theoremfzofig 10236 Half-open integer sets are finite. (Contributed by Jim Kingdon, 21-May-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
 
Theoremnn0ennn 10237 The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
 |- 
 NN0  ~~  NN
 
Theoremnnenom 10238 The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |- 
 NN  ~~  om
 
Theoremnnct 10239  NN is dominated by  om. (Contributed by Thierry Arnoux, 29-Dec-2016.)
 |- 
 NN  ~<_  om
 
Theoremuzennn 10240 An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( M  e.  ZZ  ->  ( ZZ>= `  M )  ~~  NN )
 
Theoremfnn0nninf 10241* A function from  NN0 into ℕ. (Contributed by Jim Kingdon, 16-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   =>    |-  ( F  o.  `' G ) : NN0 -->
 
Theoremfxnn0nninf 10242* A function from NN0* into ℕ. (Contributed by Jim Kingdon, 16-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  I :NN0* -->
 
Theorem0tonninf 10243* The mapping of zero into ℕ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( I `  0
 )  =  ( x  e.  om  |->  (/) )
 
Theorem1tonninf 10244* The mapping of one into ℕ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( I `  1
 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
 
Theoreminftonninf 10245* The mapping of +oo into ℕ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( I ` +oo )  =  ( x  e.  om  |->  1o )
 
4.6.4  Strong induction over upper sets of integers
 
Theoremuzsinds 10246* Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  ( ZZ>= `  M )  ->  ( A. y  e.  ( M ... ( x  -  1
 ) ) ps  ->  ph ) )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ch )
 
Theoremnnsinds 10247* Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  NN  ->  (
 A. y  e.  (
 1 ... ( x  -  1 ) ) ps 
 ->  ph ) )   =>    |-  ( N  e.  NN  ->  ch )
 
Theoremnn0sinds 10248* Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  NN0  ->  ( A. y  e.  (
 0 ... ( x  -  1 ) ) ps 
 ->  ph ) )   =>    |-  ( N  e.  NN0 
 ->  ch )
 
4.6.5  The infinite sequence builder "seq"
 
Syntaxcseq 10249 Extend class notation with recursive sequence builder.
 class  seq M (  .+  ,  F )
 
Definitiondf-seqfrec 10250* Define a general-purpose operation that builds a recursive sequence (i.e., a function on an upper integer set such as  NN or  NN0) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by seqf 10265, seq3-1 10264 and seq3p1 10266. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation  +, an input sequence  F with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence  seq 1 (  +  ,  F ) with values 1, 3/2, 7/4, 15/8,.., so that  (  seq 1
(  +  ,  F
) `  1 )  =  1,  (  seq 1 (  +  ,  F ) `  2
)  = 3/2, etc. In other words,  seq M (  +  ,  F ) transforms a sequence  F into an infinite series. 
seq M (  +  ,  F )  ~~>  2 means "the sum of F(n) from n = M to infinity is 2." Since limits are unique (climuni 11094), by climdm 11096 the "sum of F(n) from n = 1 to infinity" can be expressed as  (  ~~>  `  seq 1
(  +  ,  F
) ) (provided the sequence converges) and evaluates to 2 in this example.

Internally, the frec function generates as its values a set of ordered pairs starting at 
<. M ,  ( F `
 M ) >., with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain.

(Contributed by NM, 18-Apr-2005.) (Revised by Jim Kingdon, 4-Nov-2022.)

 |- 
 seq M (  .+  ,  F )  =  ran frec ( ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( y 
 .+  ( F `  ( x  +  1
 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )
 
Theoremseqex 10251 Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |- 
 seq M (  .+  ,  F )  e.  _V
 
Theoremseqeq1 10252 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
 
Theoremseqeq2 10253 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  (  .+  =  Q  ->  seq M (  .+  ,  F )  =  seq M ( Q ,  F ) )
 
Theoremseqeq3 10254 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  ( F  =  G  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
 
Theoremseqeq1d 10255 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq A (  .+  ,  F )  =  seq B ( 
 .+  ,  F )
 )
 
Theoremseqeq2d 10256 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq M ( A ,  F )  =  seq M ( B ,  F ) )
 
Theoremseqeq3d 10257 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M ( 
 .+  ,  B )
 )
 
Theoremseqeq123d 10258 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  M  =  N )   &    |-  ( ph  ->  .+  =  Q )   &    |-  ( ph  ->  F  =  G )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )
 
Theoremnfseq 10259 Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x M   &    |-  F/_ x  .+   &    |-  F/_ x F   =>    |-  F/_ x  seq M (  .+  ,  F )
 
Theoremiseqovex 10260* Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
 |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  ->  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y )  e.  S )
 
Theoremiseqvalcbv 10261* Changing the bound variables in an expression which appears in some  seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.)
 |- frec
 ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  T  |->  <. ( a  +  1 ) ,  (
 a ( c  e.  ( ZZ>= `  M ) ,  d  e.  S  |->  ( d  .+  ( F `
  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M ) >. )
 
Theoremseq3val 10262* Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10265, seq3-1 10264 and seq3p1 10266, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
 
Theoremseqvalcd 10263* Value of the sequence builder function. Similar to seq3val 10262 but the classes  D (type of each term) and  C (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
 
Theoremseq3-1 10264* Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  M )  =  ( F `  M ) )
 
Theoremseqf 10265* Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
 
Theoremseq3p1 10266* Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
Theoremseqovcd 10267* A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10268 and seq1cd 10269 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   =>    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C ) )  ->  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y )  e.  C )
 
Theoremseqf2 10268* Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> C )
 
Theoremseq1cd 10269* Initial value of the recursive sequence builder. A version of seq3-1 10264 which provides two classes 
D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  M )  =  ( F `  M ) )
 
Theoremseqp1cd 10270* Value of the sequence builder function at a successor. A version of seq3p1 10266 which provides two classes  D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1
 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
Theoremseq3clss 10271* Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  T )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  ( F `
  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   &    |-  ( ph  ->  S 
 C_  T )   &    |-  (
 ( ph  /\  ( x  e.  T  /\  y  e.  T ) )  ->  ( x  .+  y )  e.  T )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  e.  S )
 
Theoremseq3m1 10272* Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 )
 ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) ) 
 .+  ( F `  N ) ) )
 
Theoremseq3fveq2 10273* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  K )  =  ( G `  K ) )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K )
 )   &    |-  ( ( ph  /\  k  e.  ( ( K  +  1 ) ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq K (  .+  ,  G ) `  N ) )
 
Theoremseq3feq2 10274* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  K )  =  ( G `  K ) )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( F `  k )  =  ( G `  k ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  |`  ( ZZ>= `  K ) )  = 
 seq K (  .+  ,  G ) )
 
Theoremseq3fveq 10275* Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
Theoremseq3feq 10276* Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  ( G `  k ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M ( 
 .+  ,  G )
 )
 
Theoremseq3shft2 10277* Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  =  ( G `
  ( k  +  K ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) ) 
 ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  (  seq ( M  +  K ) (  .+  ,  G ) `  ( N  +  K ) ) )
 
Theoremserf 10278* An infinite series of complex terms is a function from  NN to  CC. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
 
Theoremserfre 10279* An infinite series of real numbers is a function from  NN to  RR. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   =>    |-  ( ph  ->  seq M (  +  ,  F ) : Z --> RR )
 
Theoremmonoord 10280* Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  -  1 ) ) ) 
 ->  ( F `  k
 )  <_  ( F `  ( k  +  1 ) ) )   =>    |-  ( ph  ->  ( F `  M ) 
 <_  ( F `  N ) )
 
Theoremmonoord2 10281* Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  -  1 ) ) ) 
 ->  ( F `  (
 k  +  1 ) )  <_  ( F `  k ) )   =>    |-  ( ph  ->  ( F `  N ) 
 <_  ( F `  M ) )
 
Theoremser3mono 10282* The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  RR )   &    |-  ( ( ph  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  0  <_  ( F `  x ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  K )  <_  (  seq M (  +  ,  F ) `  N ) )
 
Theoremseq3split 10283* Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K ) )  ->  ( F `  x )  e.  S )   =>    |-  ( ph  ->  ( 
 seq K (  .+  ,  F ) `  N )  =  ( (  seq K (  .+  ,  F ) `  M )  .+  (  seq ( M  +  1 )
 (  .+  ,  F ) `  N ) ) )
 
Theoremseq3-1p 10284* Removing the first term from a sequence. (Contributed by Jim Kingdon, 16-Aug-2021.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  ( ( F `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F ) `  N ) ) )
 
Theoremseq3caopr3 10285* Lemma for seq3caopr2 10286. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 ) Q ( G `
  k ) ) )   &    |-  ( ( ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n ) Q (  seq M ( 
 .+  ,  G ) `  n ) )  .+  ( ( F `  ( n  +  1
 ) ) Q ( G `  ( n  +  1 ) ) ) )  =  ( ( (  seq M (  .+  ,  F ) `
  n )  .+  ( F `  ( n  +  1 ) ) ) Q ( ( 
 seq M (  .+  ,  G ) `  n )  .+  ( G `  ( n  +  1
 ) ) ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseq3caopr2 10286* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ( ph  /\  ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 ) )  ->  (
 ( x Q z )  .+  ( y Q w ) )  =  ( ( x 
 .+  y ) Q ( z  .+  w ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 ) Q ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseq3caopr 10287* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  .+  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `
  N )  .+  (  seq M (  .+  ,  G ) `  N ) ) )
 
Theoremiseqf1olemkle 10288* Lemma for seq3f1o 10308. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   =>    |-  ( ph  ->  K  <_  ( `' J `  K ) )
 
Theoremiseqf1olemklt 10289* Lemma for seq3f1o 10308. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   =>    |-  ( ph  ->  K  <  ( `' J `  K ) )
 
Theoremiseqf1olemqcl 10290 Lemma for seq3f1o 10308. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   =>    |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `
  A ) )  e.  ( M ... N ) )
 
Theoremiseqf1olemqval 10291* Lemma for seq3f1o 10308. Value of the function  Q. (Contributed by Jim Kingdon, 28-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  ( Q `  A )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1
 ) ) ) ,  ( J `  A ) ) )
 
Theoremiseqf1olemnab 10292* Lemma for seq3f1o 10308. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K
 ... ( `' J `  K ) ) ) )
 
Theoremiseqf1olemab 10293* Lemma for seq3f1o 10308. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  A  e.  ( K ... ( `' J `  K ) ) )   &    |-  ( ph  ->  B  e.  ( K ... ( `' J `  K ) ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremiseqf1olemnanb 10294* Lemma for seq3f1o 10308. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  -.  A  e.  ( K
 ... ( `' J `  K ) ) )   &    |-  ( ph  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremiseqf1olemqf 10295* Lemma for seq3f1o 10308. Domain and codomain of  Q. (Contributed by Jim Kingdon, 26-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
 
Theoremiseqf1olemmo 10296* Lemma for seq3f1o 10308. Showing that  Q is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremiseqf1olemqf1o 10297* Lemma for seq3f1o 10308. 
Q is a permutation of  ( M ... N
).  Q is formed from the constant portion of  J, followed by the single element  K (at position  K), followed by the rest of J (with the  K deleted and the elements before  K moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
 
Theoremiseqf1olemqk 10298* Lemma for seq3f1o 10308. 
Q is constant for one more position than  J is. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   =>    |-  ( ph  ->  A. x  e.  ( M ... K ) ( Q `  x )  =  x )
 
Theoremiseqf1olemjpcl 10299* Lemma for seq3f1o 10308. A closure lemma involving  J and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  P  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  (
 f `  x )
 ) ,  ( G `
  M ) ) )   =>    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( [_ J  /  f ]_ P `  x )  e.  S )
 
Theoremiseqf1olemqpcl 10300* Lemma for seq3f1o 10308. A closure lemma involving  Q and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  P  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  (
 f `  x )
 ) ,  ( G `
  M ) ) )   =>    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( [_ Q  /  f ]_ P `  x )  e.  S )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >