HomeHome Intuitionistic Logic Explorer
Theorem List (p. 103 of 150)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10201-10300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfzocatel 10201 Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.)
 |-  ( ( ( A  e.  ( 0..^ ( B  +  C ) )  /\  -.  A  e.  ( 0..^ B ) )  /\  ( B  e.  ZZ  /\  C  e.  ZZ ) )  ->  ( A  -  B )  e.  ( 0..^ C ) )
 
Theoremubmelfzo 10202 If an integer in a 1 based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.)
 |-  ( K  e.  (
 1 ... N )  ->  ( N  -  K )  e.  ( 0..^ N ) )
 
Theoremelfzodifsumelfzo 10203 If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
 |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  (
 0 ... P ) ) 
 ->  ( I  e.  (
 0..^ ( N  -  M ) )  ->  ( I  +  M )  e.  ( 0..^ P ) ) )
 
Theoremelfzom1elp1fzo 10204 Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.)
 |-  ( ( N  e.  ZZ  /\  I  e.  (
 0..^ ( N  -  1 ) ) ) 
 ->  ( I  +  1 )  e.  ( 0..^ N ) )
 
Theoremelfzom1elfzo 10205 Membership in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.)
 |-  ( ( N  e.  ZZ  /\  I  e.  (
 0..^ ( N  -  1 ) ) ) 
 ->  I  e.  (
 0..^ N ) )
 
Theoremfzval3 10206 Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( N  e.  ZZ  ->  ( M ... N )  =  ( M..^ ( N  +  1
 ) ) )
 
Theoremfzosn 10207 Expressing a singleton as a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( A  e.  ZZ  ->  ( A..^ ( A  +  1 ) )  =  { A }
 )
 
Theoremelfzomin 10208 Membership of an integer in the smallest open range of integers. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( Z  e.  ZZ  ->  Z  e.  ( Z..^ ( Z  +  1 ) ) )
 
Theoremzpnn0elfzo 10209 Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( Z  e.  ZZ  /\  N  e.  NN0 )  ->  ( Z  +  N )  e.  ( Z..^ ( ( Z  +  N )  +  1
 ) ) )
 
Theoremzpnn0elfzo1 10210 Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( Z  e.  ZZ  /\  N  e.  NN0 )  ->  ( Z  +  N )  e.  ( Z..^ ( Z  +  ( N  +  1 )
 ) ) )
 
Theoremfzosplitsnm1 10211 Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>=
 `  ( A  +  1 ) ) ) 
 ->  ( A..^ B )  =  ( ( A..^ ( B  -  1
 ) )  u.  {
 ( B  -  1
 ) } ) )
 
Theoremelfzonlteqm1 10212 If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.)
 |-  ( ( A  e.  ( 0..^ B )  /\  -.  A  <  ( B  -  1 ) ) 
 ->  A  =  ( B  -  1 ) )
 
Theoremfzonn0p1 10213 A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
 |-  ( N  e.  NN0  ->  N  e.  ( 0..^ ( N  +  1
 ) ) )
 
Theoremfzossfzop1 10214 A half-open range of nonnegative integers is a subset of a half-open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
 |-  ( N  e.  NN0  ->  ( 0..^ N )  C_  ( 0..^ ( N  +  1 ) ) )
 
Theoremfzonn0p1p1 10215 If a nonnegative integer is element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
 |-  ( I  e.  (
 0..^ N )  ->  ( I  +  1
 )  e.  ( 0..^ ( N  +  1 ) ) )
 
Theoremelfzom1p1elfzo 10216 Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
 |-  ( ( N  e.  NN  /\  X  e.  (
 0..^ ( N  -  1 ) ) ) 
 ->  ( X  +  1 )  e.  ( 0..^ N ) )
 
Theoremfzo0ssnn0 10217 Half-open integer ranges starting with 0 are subsets of NN0. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  ( 0..^ N ) 
 C_  NN0
 
Theoremfzo01 10218 Expressing the singleton of  0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( 0..^ 1 )  =  { 0 }
 
Theoremfzo12sn 10219 A 1-based half-open integer interval up to, but not including, 2 is a singleton. (Contributed by Alexander van der Vekens, 31-Jan-2018.)
 |-  ( 1..^ 2 )  =  { 1 }
 
Theoremfzo0to2pr 10220 A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
 |-  ( 0..^ 2 )  =  { 0 ,  1 }
 
Theoremfzo0to3tp 10221 A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
 |-  ( 0..^ 3 )  =  { 0 ,  1 ,  2 }
 
Theoremfzo0to42pr 10222 A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.)
 |-  ( 0..^ 4 )  =  ( { 0 ,  1 }  u.  { 2 ,  3 } )
 
Theoremfzo0sn0fzo1 10223 A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018.)
 |-  ( N  e.  NN  ->  ( 0..^ N )  =  ( { 0 }  u.  ( 1..^ N ) ) )
 
Theoremfzoend 10224 The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.)
 |-  ( A  e.  ( A..^ B )  ->  ( B  -  1 )  e.  ( A..^ B ) )
 
Theoremfzo0end 10225 The endpoint of a zero-based half-open range. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
 |-  ( B  e.  NN  ->  ( B  -  1
 )  e.  ( 0..^ B ) )
 
Theoremssfzo12 10226 Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
 |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L ) 
 ->  ( ( K..^ L )  C_  ( M..^ N )  ->  ( M  <_  K 
 /\  L  <_  N ) ) )
 
Theoremssfzo12bi 10227 Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
 |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
 ( K..^ L ) 
 C_  ( M..^ N ) 
 <->  ( M  <_  K  /\  L  <_  N )
 ) )
 
Theoremubmelm1fzo 10228 The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
 |-  ( K  e.  (
 0..^ N )  ->  ( ( N  -  K )  -  1
 )  e.  ( 0..^ N ) )
 
Theoremfzofzp1 10229 If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( C  e.  ( A..^ B )  ->  ( C  +  1 )  e.  ( A ... B ) )
 
Theoremfzofzp1b 10230 If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.)
 |-  ( C  e.  ( ZZ>=
 `  A )  ->  ( C  e.  ( A..^ B )  <->  ( C  +  1 )  e.  ( A ... B ) ) )
 
Theoremelfzom1b 10231 An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.)
 |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1..^ N )  <->  ( K  -  1 )  e.  (
 0..^ ( N  -  1 ) ) ) )
 
Theoremelfzonelfzo 10232 If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
 |-  ( N  e.  ZZ  ->  ( ( K  e.  ( M..^ R )  /\  -.  K  e.  ( M..^ N ) )  ->  K  e.  ( N..^ R ) ) )
 
Theoremelfzomelpfzo 10233 An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
 |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( K  e.  (
 ( M  -  L )..^ ( N  -  L ) )  <->  ( K  +  L )  e.  ( M..^ N ) ) )
 
Theorempeano2fzor 10234 A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015.)
 |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( K  +  1 )  e.  ( M..^ N ) )  ->  K  e.  ( M..^ N ) )
 
Theoremfzosplitsn 10235 Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( B  e.  ( ZZ>=
 `  A )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ B )  u.  { B }
 ) )
 
Theoremfzosplitprm1 10236 Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B ) 
 ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ ( B  -  1
 ) )  u.  {
 ( B  -  1
 ) ,  B }
 ) )
 
Theoremfzosplitsni 10237 Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( B  e.  ( ZZ>=
 `  A )  ->  ( C  e.  ( A..^ ( B  +  1 ) )  <->  ( C  e.  ( A..^ B )  \/  C  =  B ) ) )
 
Theoremfzisfzounsn 10238 A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
 |-  ( B  e.  ( ZZ>=
 `  A )  ->  ( A ... B )  =  ( ( A..^ B )  u.  { B } ) )
 
Theoremfzostep1 10239 Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( A  e.  ( B..^ C )  ->  (
 ( A  +  1 )  e.  ( B..^ C )  \/  ( A  +  1 )  =  C ) )
 
Theoremfzoshftral 10240* Shift the scanning order inside of a quantification over a half-open integer range, analogous to fzshftral 10110. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M..^ N )
 ph 
 <-> 
 A. k  e.  (
 ( M  +  K )..^ ( N  +  K ) ) [. (
 k  -  K ) 
 /  j ]. ph )
 )
 
Theoremfzind2 10241* Induction on the integers from  M to  N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9370 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
 |-  ( x  =  M  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  ( N  e.  ( ZZ>= `  M )  ->  ps )   &    |-  (
 y  e.  ( M..^ N )  ->  ( ch  ->  th ) )   =>    |-  ( K  e.  ( M ... N ) 
 ->  ta )
 
Theoremexfzdc 10242* Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  n  e.  ( M ... N ) )  -> DECID  ps )   =>    |-  ( ph  -> DECID  E. n  e.  ( M ... N ) ps )
 
Theoremfvinim0ffz 10243 The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
 |-  ( ( F :
 ( 0 ... K )
 --> V  /\  K  e.  NN0 )  ->  ( (
 ( F " {
 0 ,  K }
 )  i^i  ( F " ( 1..^ K ) ) )  =  (/)  <->  (
 ( F `  0
 )  e/  ( F " ( 1..^ K ) )  /\  ( F `
  K )  e/  ( F " ( 1..^ K ) ) ) ) )
 
Theoremsubfzo0 10244 The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N ) ) 
 ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J )  <  N ) )
 
4.5.7  Rational numbers (cont.)
 
Theoremqtri3or 10245 Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
 |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
 
Theoremqletric 10246 Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <_  B  \/  B  <_  A ) )
 
Theoremqlelttric 10247 Rational trichotomy. (Contributed by Jim Kingdon, 7-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <_  B  \/  B  <  A ) )
 
Theoremqltnle 10248 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A )
 )
 
Theoremqdceq 10249 Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  =  B )
 
Theoremexbtwnzlemstep 10250* Lemma for exbtwnzlemex 10252. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
 |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  A  e.  RR )   &    |-  (
 ( ph  /\  n  e. 
 ZZ )  ->  ( n  <_  A  \/  A  <  n ) )   =>    |-  ( ( ph  /\ 
 E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  ( K  +  1
 ) ) ) ) 
 ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  K ) ) )
 
Theoremexbtwnzlemshrink 10251* Lemma for exbtwnzlemex 10252. Shrinking the range around  A. (Contributed by Jim Kingdon, 10-May-2022.)
 |-  ( ph  ->  J  e.  NN )   &    |-  ( ph  ->  A  e.  RR )   &    |-  (
 ( ph  /\  n  e. 
 ZZ )  ->  ( n  <_  A  \/  A  <  n ) )   =>    |-  ( ( ph  /\ 
 E. m  e.  ZZ  ( m  <_  A  /\  A  <  ( m  +  J ) ) ) 
 ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )
 
Theoremexbtwnzlemex 10252* Existence of an integer so that a given real number is between the integer and its successor. The real number must satisfy the  n  <_  A  \/  A  <  n hypothesis. For example either a rational number or a number which is irrational (in the sense of being apart from any rational number) will meet this condition.

The proof starts by finding two integers which are less than and greater than  A. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on the  n  <_  A  \/  A  <  n hypothesis, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.)

 |-  ( ph  ->  A  e.  RR )   &    |-  ( ( ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )   =>    |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 )
 ) )
 
Theoremexbtwnz 10253* If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.)
 |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 )
 ) )   &    |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )
 
Theoremqbtwnz 10254* There is a unique greatest integer less than or equal to a rational number. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( A  e.  QQ  ->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )
 
Theoremrebtwn2zlemstep 10255* Lemma for rebtwn2z 10257. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
 |-  ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( K  +  1 )
 ) ) )  ->  E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  K ) ) )
 
Theoremrebtwn2zlemshrink 10256* Lemma for rebtwn2z 10257. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
 |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>=
 `  2 )  /\  E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  +  2 ) ) )
 
Theoremrebtwn2z 10257* A real number can be bounded by integers above and below which are two apart.

The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.)

 |-  ( A  e.  RR  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  +  2 ) ) )
 
Theoremqbtwnrelemcalc 10258 Lemma for qbtwnre 10259. Calculations involved in showing the constructed rational number is less than 
B. (Contributed by Jim Kingdon, 14-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  M  <  ( A  x.  ( 2  x.  N ) ) )   &    |-  ( ph  ->  ( 1  /  N )  <  ( B  -  A ) )   =>    |-  ( ph  ->  ( ( M  +  2 )  /  ( 2  x.  N ) )  <  B )
 
Theoremqbtwnre 10259* The rational numbers are dense in 
RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B ) 
 ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
 
Theoremqbtwnxr 10260* The rational numbers are dense in  RR*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  E. x  e.  QQ  ( A  <  x 
 /\  x  <  B ) )
 
Theoremqavgle 10261 The average of two rational numbers is less than or equal to at least one of them. (Contributed by Jim Kingdon, 3-Nov-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( ( A  +  B ) 
 /  2 )  <_  A  \/  ( ( A  +  B )  / 
 2 )  <_  B ) )
 
Theoremioo0 10262 An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( ( A (,) B )  =  (/)  <->  B  <_  A ) )
 
Theoremioom 10263* An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  x  e.  ( A (,) B )  <->  A  <  B ) )
 
Theoremico0 10264 An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( ( A [,) B )  =  (/)  <->  B  <_  A ) )
 
Theoremioc0 10265 An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( ( A (,] B )  =  (/)  <->  B  <_  A ) )
 
Theoremdfrp2 10266 Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.)
 |-  RR+  =  ( 0 (,) +oo )
 
Theoremelicod 10267 Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A 
 <_  C )   &    |-  ( ph  ->  C  <  B )   =>    |-  ( ph  ->  C  e.  ( A [,) B ) )
 
Theoremicogelb 10268 An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  ( A [,) B ) )  ->  A  <_  C )
 
Theoremelicore 10269 A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) ) 
 ->  C  e.  RR )
 
4.6  Elementary integer functions
 
4.6.1  The floor and ceiling functions
 
Syntaxcfl 10270 Extend class notation with floor (greatest integer) function.
 class  |_
 
Syntaxcceil 10271 Extend class notation to include the ceiling function.
 class ⌈
 
Definitiondf-fl 10272* Define the floor (greatest integer less than or equal to) function. See flval 10274 for its value, flqlelt 10278 for its basic property, and flqcl 10275 for its closure. For example,  ( |_ `  (
3  /  2 ) )  =  1 while  ( |_ `  -u ( 3  /  2
) )  =  -u
2 (ex-fl 14562).

Although we define this on real numbers so that notations are similar to the Metamath Proof Explorer, in the absence of excluded middle few theorems will be possible for all real numbers. Imagine a real number which is around 2.99995 or 3.00001 . In order to determine whether its floor is 2 or 3, it would be necessary to compute the number to arbitrary precision.

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

 |- 
 |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y 
 <_  x  /\  x  < 
 ( y  +  1 ) ) ) )
 
Definitiondf-ceil 10273 The ceiling (least integer greater than or equal to) function. Defined in ISO 80000-2:2009(E) operation 2-9.18 and the "NIST Digital Library of Mathematical Functions" , front introduction, "Common Notations and Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4. See ceilqval 10308 for its value, ceilqge 10312 and ceilqm1lt 10314 for its basic properties, and ceilqcl 10310 for its closure. For example,  (⌈ `  (
3  /  2 ) )  =  2 while  (⌈ `  -u ( 3  /  2
) )  =  -u
1 (ex-ceil 14563).

As described in df-fl 10272 most theorems are only for rationals, not reals.

The symbol ⌈ is inspired by the gamma shaped left bracket of the usual notation. (Contributed by David A. Wheeler, 19-May-2015.)

 |- ⌈  =  ( x  e.  RR  |->  -u ( |_ `  -u x ) )
 
Theoremflval 10274* Value of the floor (greatest integer) function. The floor of  A is the (unique) integer less than or equal to  A whose successor is strictly greater than  A. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
 |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e. 
 ZZ  ( x  <_  A  /\  A  <  ( x  +  1 )
 ) ) )
 
Theoremflqcl 10275 The floor (greatest integer) function yields an integer when applied to a rational (closure law). For a similar closure law for real numbers apart from any integer, see flapcl 10277. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
 
Theoremapbtwnz 10276* There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.)
 |-  ( ( A  e.  RR  /\  A. n  e. 
 ZZ  A #  n )  ->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )
 
Theoremflapcl 10277* The floor (greatest integer) function yields an integer when applied to a real number apart from any integer. For example, an irrational number (see for example sqrt2irrap 12182) would satisfy this condition. (Contributed by Jim Kingdon, 11-May-2022.)
 |-  ( ( A  e.  RR  /\  A. n  e. 
 ZZ  A #  n )  ->  ( |_ `  A )  e.  ZZ )
 
Theoremflqlelt 10278 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( ( |_ `  A )  <_  A  /\  A  <  ( ( |_ `  A )  +  1 )
 ) )
 
Theoremflqcld 10279 The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   =>    |-  ( ph  ->  ( |_ `  A )  e. 
 ZZ )
 
Theoremflqle 10280 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( |_ `  A )  <_  A )
 
Theoremflqltp1 10281 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( A  e.  QQ  ->  A  <  ( ( |_ `  A )  +  1 ) )
 
Theoremqfraclt1 10282 The fractional part of a rational number is less than one. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( A  -  ( |_ `  A ) )  <  1 )
 
Theoremqfracge0 10283 The fractional part of a rational number is nonnegative. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( A  e.  QQ  ->  0  <_  ( A  -  ( |_ `  A ) ) )
 
Theoremflqge 10284 The floor function value is the greatest integer less than or equal to its argument. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( B  <_  A  <->  B  <_  ( |_ `  A ) ) )
 
Theoremflqlt 10285 The floor function value is less than the next integer. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( A  <  B  <-> 
 ( |_ `  A )  <  B ) )
 
Theoremflid 10286 An integer is its own floor. (Contributed by NM, 15-Nov-2004.)
 |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
 
Theoremflqidm 10287 The floor function is idempotent. (Contributed by Jim Kingdon, 8-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( |_ `  ( |_ `  A ) )  =  ( |_ `  A ) )
 
Theoremflqidz 10288 A rational number equals its floor iff it is an integer. (Contributed by Jim Kingdon, 9-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( ( |_ `  A )  =  A  <->  A  e.  ZZ ) )
 
Theoremflqltnz 10289 If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  -.  A  e.  ZZ )  ->  ( |_ `  A )  <  A )
 
Theoremflqwordi 10290 Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  A  <_  B )  ->  ( |_ `  A )  <_  ( |_ `  B ) )
 
Theoremflqword2 10291 Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  A  <_  B )  ->  ( |_ `  B )  e.  ( ZZ>= `  ( |_ `  A ) ) )
 
Theoremflqbi 10292 A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( ( |_ `  A )  =  B  <->  ( B  <_  A  /\  A  <  ( B  +  1 ) ) ) )
 
Theoremflqbi2 10293 A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
 |-  ( ( N  e.  ZZ  /\  F  e.  QQ )  ->  ( ( |_ `  ( N  +  F ) )  =  N  <->  ( 0  <_  F  /\  F  <  1 ) ) )
 
Theoremadddivflid 10294 The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  ( B  <  C  <->  ( |_ `  ( A  +  ( B  /  C ) ) )  =  A ) )
 
Theoremflqge0nn0 10295 The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by Jim Kingdon, 10-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  0  <_  A )  ->  ( |_ `  A )  e.  NN0 )
 
Theoremflqge1nn 10296 The floor of a number greater than or equal to 1 is a positive integer. (Contributed by Jim Kingdon, 10-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  1  <_  A )  ->  ( |_ `  A )  e.  NN )
 
Theoremfldivnn0 10297 The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  e.  NN0 )
 
Theoremdivfl0 10298 The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  <  B  <->  ( |_ `  ( A 
 /  B ) )  =  0 ) )
 
Theoremflqaddz 10299 An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  N  e.  ZZ )  ->  ( |_ `  ( A  +  N )
 )  =  ( ( |_ `  A )  +  N ) )
 
Theoremflqzadd 10300 An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
 |-  ( ( N  e.  ZZ  /\  A  e.  QQ )  ->  ( |_ `  ( N  +  A )
 )  =  ( N  +  ( |_ `  A ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >