ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iimas Unicode version

Definition df-iimas 12722
Description: Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly  f must either be injective or satisfy the well-definedness condition  f ( a )  =  f ( c )  /\  f ( b )  =  f ( d )  ->  f (
a  +  b )  =  f ( c  +  d ) for each relevant operation.

Note that although we call this an "image" by association to df-ima 4639, in order to keep the definition simple we consider only the case when the domain of  F is equal to the base set of  R. Other cases can be achieved by restricting 
F (with df-res 4638) and/or  R ( with df-iress 12469) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by AV, 6-Oct-2020.)

Assertion
Ref Expression
df-iimas  |-  "s  =  (
f  e.  _V , 
r  e.  _V  |->  [_ ( Base `  r )  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
Distinct variable group:    f, p, q, r, v

Detailed syntax breakdown of Definition df-iimas
StepHypRef Expression
1 cimas 12719 . 2  class  "s
2 vf . . 3  setvar  f
3 vr . . 3  setvar  r
4 cvv 2737 . . 3  class  _V
5 vv . . . 4  setvar  v
63cv 1352 . . . . 5  class  r
7 cbs 12461 . . . . 5  class  Base
86, 7cfv 5216 . . . 4  class  ( Base `  r )
9 cnx 12458 . . . . . . 7  class  ndx
109, 7cfv 5216 . . . . . 6  class  ( Base `  ndx )
112cv 1352 . . . . . . 7  class  f
1211crn 4627 . . . . . 6  class  ran  f
1310, 12cop 3595 . . . . 5  class  <. ( Base `  ndx ) ,  ran  f >.
14 cplusg 12535 . . . . . . 7  class  +g
159, 14cfv 5216 . . . . . 6  class  ( +g  ` 
ndx )
16 vp . . . . . . 7  setvar  p
175cv 1352 . . . . . . 7  class  v
18 vq . . . . . . . 8  setvar  q
1916cv 1352 . . . . . . . . . . . 12  class  p
2019, 11cfv 5216 . . . . . . . . . . 11  class  ( f `
 p )
2118cv 1352 . . . . . . . . . . . 12  class  q
2221, 11cfv 5216 . . . . . . . . . . 11  class  ( f `
 q )
2320, 22cop 3595 . . . . . . . . . 10  class  <. (
f `  p ) ,  ( f `  q ) >.
246, 14cfv 5216 . . . . . . . . . . . 12  class  ( +g  `  r )
2519, 21, 24co 5874 . . . . . . . . . . 11  class  ( p ( +g  `  r
) q )
2625, 11cfv 5216 . . . . . . . . . 10  class  ( f `
 ( p ( +g  `  r ) q ) )
2723, 26cop 3595 . . . . . . . . 9  class  <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>.
2827csn 3592 . . . . . . . 8  class  { <. <.
( f `  p
) ,  ( f `
 q ) >. ,  ( f `  ( p ( +g  `  r ) q ) ) >. }
2918, 17, 28ciun 3886 . . . . . . 7  class  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }
3016, 17, 29ciun 3886 . . . . . 6  class  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }
3115, 30cop 3595 . . . . 5  class  <. ( +g  `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >.
32 cmulr 12536 . . . . . . 7  class  .r
339, 32cfv 5216 . . . . . 6  class  ( .r
`  ndx )
346, 32cfv 5216 . . . . . . . . . . . 12  class  ( .r
`  r )
3519, 21, 34co 5874 . . . . . . . . . . 11  class  ( p ( .r `  r
) q )
3635, 11cfv 5216 . . . . . . . . . 10  class  ( f `
 ( p ( .r `  r ) q ) )
3723, 36cop 3595 . . . . . . . . 9  class  <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>.
3837csn 3592 . . . . . . . 8  class  { <. <.
( f `  p
) ,  ( f `
 q ) >. ,  ( f `  ( p ( .r
`  r ) q ) ) >. }
3918, 17, 38ciun 3886 . . . . . . 7  class  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }
4016, 17, 39ciun 3886 . . . . . 6  class  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }
4133, 40cop 3595 . . . . 5  class  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >.
4213, 31, 41ctp 3594 . . . 4  class  { <. (
Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }
435, 8, 42csb 3057 . . 3  class  [_ ( Base `  r )  / 
v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }
442, 3, 4, 4, 43cmpo 5876 . 2  class  ( f  e.  _V ,  r  e.  _V  |->  [_ ( Base `  r )  / 
v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
451, 44wceq 1353 1  wff  "s  =  (
f  e.  _V , 
r  e.  _V  |->  [_ ( Base `  r )  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
Colors of variables: wff set class
This definition is referenced by:  imasex  12725  imasival  12726
  Copyright terms: Public domain W3C validator