ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasival Unicode version

Theorem imasival 12949
Description: Value of an image structure. The is a lemma for the theorems imasbas 12950, imasplusg 12951, and imasmulr 12952 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
Hypotheses
Ref Expression
imasval.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasval.p  |-  .+  =  ( +g  `  R )
imasval.m  |-  .X.  =  ( .r `  R )
imasval.q  |-  .x.  =  ( .s `  R )
imasval.a  |-  ( ph  -> 
.+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
imasval.t  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
imasval.f  |-  ( ph  ->  F : V -onto-> B
)
imasval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
imasival  |-  ( ph  ->  U  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. } )
Distinct variable groups:    F, p, q    R, p, q    V, p, q    ph, p, q
Allowed substitution hints:    B( q, p)    .+ ( q, p)    .+b ( q, p)    .xb ( q, p)    .x. ( q, p)    .X. ( q, p)    U( q, p)    Z( q, p)

Proof of Theorem imasival
Dummy variables  f  r  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasval.u . 2  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 df-iimas 12945 . . . 4  |-  "s  =  (
f  e.  _V , 
r  e.  _V  |->  [_ ( Base `  r )  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
32a1i 9 . . 3  |-  ( ph  ->  "s  =  ( f  e. 
_V ,  r  e. 
_V  |->  [_ ( Base `  r
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } ) )
4 basfn 12736 . . . . . 6  |-  Base  Fn  _V
5 vex 2766 . . . . . 6  |-  r  e. 
_V
6 funfvex 5575 . . . . . . 7  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
76funfni 5358 . . . . . 6  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
84, 5, 7mp2an 426 . . . . 5  |-  ( Base `  r )  e.  _V
98a1i 9 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  r  =  R ) )  -> 
( Base `  r )  e.  _V )
10 simplrl 535 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  f  =  F )
1110rneqd 4895 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ran  f  =  ran  F )
12 imasval.f . . . . . . . . 9  |-  ( ph  ->  F : V -onto-> B
)
13 forn 5483 . . . . . . . . 9  |-  ( F : V -onto-> B  ->  ran  F  =  B )
1412, 13syl 14 . . . . . . . 8  |-  ( ph  ->  ran  F  =  B )
1514ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ran  F  =  B )
1611, 15eqtrd 2229 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ran  f  =  B )
1716opeq2d 3815 . . . . 5  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( Base `  ndx ) ,  ran  f >.  =  <. ( Base `  ndx ) ,  B >. )
18 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  r  =  R )
1918fveq2d 5562 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( Base `  r )  =  (
Base `  R )
)
20 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  v  =  ( Base `  r )
)
21 imasval.v . . . . . . . . . 10  |-  ( ph  ->  V  =  ( Base `  R ) )
2221ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  V  =  ( Base `  R )
)
2319, 20, 223eqtr4d 2239 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  v  =  V )
2410fveq1d 5560 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  p )  =  ( F `  p ) )
2510fveq1d 5560 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  q )  =  ( F `  q ) )
2624, 25opeq12d 3816 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( f `
 p ) ,  ( f `  q
) >.  =  <. ( F `  p ) ,  ( F `  q ) >. )
2718fveq2d 5562 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( +g  `  r )  =  ( +g  `  R ) )
28 imasval.p . . . . . . . . . . . . . 14  |-  .+  =  ( +g  `  R )
2927, 28eqtr4di 2247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( +g  `  r )  =  .+  )
3029oveqd 5939 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( p
( +g  `  r ) q )  =  ( p  .+  q ) )
3110, 30fveq12d 5565 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  ( p ( +g  `  r ) q ) )  =  ( F `
 ( p  .+  q ) ) )
3226, 31opeq12d 3816 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>.  =  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. )
3332sneqd 3635 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .+  q ) ) >. } )
3423, 33iuneq12d 3940 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
3523, 34iuneq12d 3940 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
36 imasval.a . . . . . . . 8  |-  ( ph  -> 
.+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
3736ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  .+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
3835, 37eqtr4d 2232 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  .+b  )
3938opeq2d 3815 . . . . 5  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( +g  ` 
ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >.  =  <. ( +g  `  ndx ) ,  .+b  >. )
4018fveq2d 5562 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( .r `  r )  =  ( .r `  R ) )
41 imasval.m . . . . . . . . . . . . . 14  |-  .X.  =  ( .r `  R )
4240, 41eqtr4di 2247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( .r `  r )  =  .X.  )
4342oveqd 5939 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( p
( .r `  r
) q )  =  ( p  .X.  q
) )
4410, 43fveq12d 5565 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  ( p ( .r
`  r ) q ) )  =  ( F `  ( p 
.X.  q ) ) )
4526, 44opeq12d 3816 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>.  =  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. )
4645sneqd 3635 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .X.  q ) ) >. } )
4723, 46iuneq12d 3940 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
4823, 47iuneq12d 3940 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
49 imasval.t . . . . . . . 8  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
5049ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  .xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
5148, 50eqtr4d 2232 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  .xb  )
5251opeq2d 3815 . . . . 5  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( .r
`  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >.  = 
<. ( .r `  ndx ) ,  .xb  >. )
5317, 39, 52tpeq123d 3714 . . . 4  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. } )
549, 53csbied 3131 . . 3  |-  ( (
ph  /\  ( f  =  F  /\  r  =  R ) )  ->  [_ ( Base `  r
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. } )
55 fof 5480 . . . . 5  |-  ( F : V -onto-> B  ->  F : V --> B )
5612, 55syl 14 . . . 4  |-  ( ph  ->  F : V --> B )
57 imasval.r . . . . . . 7  |-  ( ph  ->  R  e.  Z )
5857elexd 2776 . . . . . 6  |-  ( ph  ->  R  e.  _V )
59 funfvex 5575 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
6059funfni 5358 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
614, 58, 60sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
6221, 61eqeltrd 2273 . . . 4  |-  ( ph  ->  V  e.  _V )
6356, 62fexd 5792 . . 3  |-  ( ph  ->  F  e.  _V )
64 basendxnn 12734 . . . . 5  |-  ( Base `  ndx )  e.  NN
65 focdmex 6172 . . . . . 6  |-  ( V  e.  _V  ->  ( F : V -onto-> B  ->  B  e.  _V )
)
6662, 12, 65sylc 62 . . . . 5  |-  ( ph  ->  B  e.  _V )
67 opexg 4261 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  _V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
6864, 66, 67sylancr 414 . . . 4  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
_V )
69 plusgndxnn 12789 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
7063ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  F  e.  _V )
71 vex 2766 . . . . . . . . . . . . . . 15  |-  p  e. 
_V
7271a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  p  e.  _V )
73 fvexg 5577 . . . . . . . . . . . . . 14  |-  ( ( F  e.  _V  /\  p  e.  _V )  ->  ( F `  p
)  e.  _V )
7470, 72, 73syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  ( F `  p )  e.  _V )
75 vex 2766 . . . . . . . . . . . . . . 15  |-  q  e. 
_V
7675a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  q  e.  _V )
77 fvexg 5577 . . . . . . . . . . . . . 14  |-  ( ( F  e.  _V  /\  q  e.  _V )  ->  ( F `  q
)  e.  _V )
7870, 76, 77syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  ( F `  q )  e.  _V )
79 opexg 4261 . . . . . . . . . . . . 13  |-  ( ( ( F `  p
)  e.  _V  /\  ( F `  q )  e.  _V )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
8074, 78, 79syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  <. ( F `  p ) ,  ( F `  q ) >.  e.  _V )
81 plusgslid 12790 . . . . . . . . . . . . . . . . . 18  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
8281slotex 12705 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  Z  ->  ( +g  `  R )  e. 
_V )
8357, 82syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( +g  `  R
)  e.  _V )
8428, 83eqeltrid 2283 . . . . . . . . . . . . . . 15  |-  ( ph  ->  .+  e.  _V )
8584ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  .+  e.  _V )
86 ovexg 5956 . . . . . . . . . . . . . 14  |-  ( ( p  e.  _V  /\  .+  e.  _V  /\  q  e.  _V )  ->  (
p  .+  q )  e.  _V )
8772, 85, 76, 86syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  (
p  .+  q )  e.  _V )
88 fvexg 5577 . . . . . . . . . . . . 13  |-  ( ( F  e.  _V  /\  ( p  .+  q )  e.  _V )  -> 
( F `  (
p  .+  q )
)  e.  _V )
8970, 87, 88syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  ( F `  ( p  .+  q ) )  e. 
_V )
90 opexg 4261 . . . . . . . . . . . 12  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p  .+  q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>.  e.  _V )
9180, 89, 90syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>.  e.  _V )
92 snexg 4217 . . . . . . . . . . 11  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .+  q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .+  q
) ) >. }  e.  _V )
9391, 92syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .+  q ) ) >. }  e.  _V )
9493ralrimiva 2570 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  V )  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. }  e.  _V )
95 iunexg 6176 . . . . . . . . 9  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .+  q
) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. }  e.  _V )
9662, 94, 95syl2an2r 595 . . . . . . . 8  |-  ( (
ph  /\  p  e.  V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. }  e.  _V )
9796ralrimiva 2570 . . . . . . 7  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .+  q
) ) >. }  e.  _V )
98 iunexg 6176 . . . . . . 7  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .+  q
) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. }  e.  _V )
9962, 97, 98syl2anc 411 . . . . . 6  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .+  q
) ) >. }  e.  _V )
10036, 99eqeltrd 2273 . . . . 5  |-  ( ph  -> 
.+b  e.  _V )
101 opexg 4261 . . . . 5  |-  ( ( ( +g  `  ndx )  e.  NN  /\  .+b  e.  _V )  ->  <. ( +g  `  ndx ) , 
.+b  >.  e.  _V )
10269, 100, 101sylancr 414 . . . 4  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+b  >.  e.  _V )
103 mulrslid 12809 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
104103simpri 113 . . . . 5  |-  ( .r
`  ndx )  e.  NN
105103slotex 12705 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  Z  ->  ( .r `  R )  e. 
_V )
10657, 105syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( .r `  R
)  e.  _V )
10741, 106eqeltrid 2283 . . . . . . . . . . . . . . 15  |-  ( ph  ->  .X.  e.  _V )
108107ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  .X.  e.  _V )
109 ovexg 5956 . . . . . . . . . . . . . 14  |-  ( ( p  e.  _V  /\  .X. 
e.  _V  /\  q  e.  _V )  ->  (
p  .X.  q )  e.  _V )
11072, 108, 76, 109syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  (
p  .X.  q )  e.  _V )
111 fvexg 5577 . . . . . . . . . . . . 13  |-  ( ( F  e.  _V  /\  ( p  .X.  q )  e.  _V )  -> 
( F `  (
p  .X.  q )
)  e.  _V )
11270, 110, 111syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  ( F `  ( p  .X.  q ) )  e. 
_V )
113 opexg 4261 . . . . . . . . . . . 12  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p  .X.  q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>.  e.  _V )
11480, 112, 113syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>.  e.  _V )
115 snexg 4217 . . . . . . . . . . 11  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .X.  q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .X.  q
) ) >. }  e.  _V )
116114, 115syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .X.  q ) ) >. }  e.  _V )
117116ralrimiva 2570 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  V )  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. }  e.  _V )
118 iunexg 6176 . . . . . . . . 9  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .X.  q
) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. }  e.  _V )
11962, 117, 118syl2an2r 595 . . . . . . . 8  |-  ( (
ph  /\  p  e.  V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. }  e.  _V )
120119ralrimiva 2570 . . . . . . 7  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .X.  q
) ) >. }  e.  _V )
121 iunexg 6176 . . . . . . 7  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .X.  q
) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. }  e.  _V )
12262, 120, 121syl2anc 411 . . . . . 6  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .X.  q
) ) >. }  e.  _V )
12349, 122eqeltrd 2273 . . . . 5  |-  ( ph  -> 
.xb  e.  _V )
124 opexg 4261 . . . . 5  |-  ( ( ( .r `  ndx )  e.  NN  /\  .xb  e.  _V )  ->  <. ( .r `  ndx ) , 
.xb  >.  e.  _V )
125104, 123, 124sylancr 414 . . . 4  |-  ( ph  -> 
<. ( .r `  ndx ) ,  .xb  >.  e.  _V )
126 tpexg 4479 . . . 4  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  .+b  >.  e.  _V  /\  <. ( .r `  ndx ) , 
.xb  >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. }  e.  _V )
12768, 102, 125, 126syl3anc 1249 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. }  e.  _V )
1283, 54, 63, 58, 127ovmpod 6050 . 2  |-  ( ph  ->  ( F  "s  R )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. } )
1291, 128eqtrd 2229 1  |-  ( ph  ->  U  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   [_csb 3084   {csn 3622   {ctp 3624   <.cop 3625   U_ciun 3916   ran crn 4664    Fn wfn 5253   -->wf 5254   -onto->wfo 5256   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   NNcn 8990   ndxcnx 12675  Slot cslot 12677   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   .scvsca 12759    "s cimas 12942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-iimas 12945
This theorem is referenced by:  imasbas  12950  imasplusg  12951  imasmulr  12952
  Copyright terms: Public domain W3C validator