ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressvalsets Unicode version

Theorem ressvalsets 12526
Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
Assertion
Ref Expression
ressvalsets  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)

Proof of Theorem ressvalsets
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2750 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
21adantr 276 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  W  e.  _V )
3 elex 2750 . . 3  |-  ( A  e.  Y  ->  A  e.  _V )
43adantl 277 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  A  e.  _V )
5 simpl 109 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  W  e.  X )
6 basendxnn 12520 . . . 4  |-  ( Base `  ndx )  e.  NN
76a1i 9 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Base `  ndx )  e.  NN )
8 inex1g 4141 . . . 4  |-  ( A  e.  Y  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
98adantl 277 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
10 setsex 12496 . . 3  |-  ( ( W  e.  X  /\  ( Base `  ndx )  e.  NN  /\  ( A  i^i  ( Base `  W
) )  e.  _V )  ->  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. )  e.  _V )
115, 7, 9, 10syl3anc 1238 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. )  e.  _V )
12 id 19 . . . 4  |-  ( w  =  W  ->  w  =  W )
13 fveq2 5517 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
1413ineq2d 3338 . . . . 5  |-  ( w  =  W  ->  (
x  i^i  ( Base `  w ) )  =  ( x  i^i  ( Base `  W ) ) )
1514opeq2d 3787 . . . 4  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>.  =  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  W ) ) >.
)
1612, 15oveq12d 5895 . . 3  |-  ( w  =  W  ->  (
w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w
) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  W ) )
>. ) )
17 ineq1 3331 . . . . 5  |-  ( x  =  A  ->  (
x  i^i  ( Base `  W ) )  =  ( A  i^i  ( Base `  W ) ) )
1817opeq2d 3787 . . . 4  |-  ( x  =  A  ->  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  W ) )
>.  =  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
)
1918oveq2d 5893 . . 3  |-  ( x  =  A  ->  ( W sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  W
) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) )
20 df-iress 12472 . . 3  |-s  =  ( w  e.  _V ,  x  e. 
_V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
2116, 19, 20ovmpog 6011 . 2  |-  ( ( W  e.  _V  /\  A  e.  _V  /\  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )  e.  _V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
222, 4, 11, 21syl3anc 1238 1  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    i^i cin 3130   <.cop 3597   ` cfv 5218  (class class class)co 5877   NNcn 8921   ndxcnx 12461   sSet csts 12462   Basecbs 12464   ↾s cress 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472
This theorem is referenced by:  ressex  12527  ressval2  12528  ressbasd  12529  strressid  12532  ressval3d  12533  resseqnbasd  12534  ressinbasd  12535  ressressg  12536  mgpress  13146
  Copyright terms: Public domain W3C validator