ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressvalsets Unicode version

Theorem ressvalsets 12769
Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
Assertion
Ref Expression
ressvalsets  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)

Proof of Theorem ressvalsets
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
21adantr 276 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  W  e.  _V )
3 elex 2774 . . 3  |-  ( A  e.  Y  ->  A  e.  _V )
43adantl 277 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  A  e.  _V )
5 simpl 109 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  W  e.  X )
6 basendxnn 12761 . . . 4  |-  ( Base `  ndx )  e.  NN
76a1i 9 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Base `  ndx )  e.  NN )
8 inex1g 4170 . . . 4  |-  ( A  e.  Y  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
98adantl 277 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
10 setsex 12737 . . 3  |-  ( ( W  e.  X  /\  ( Base `  ndx )  e.  NN  /\  ( A  i^i  ( Base `  W
) )  e.  _V )  ->  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. )  e.  _V )
115, 7, 9, 10syl3anc 1249 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. )  e.  _V )
12 id 19 . . . 4  |-  ( w  =  W  ->  w  =  W )
13 fveq2 5561 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
1413ineq2d 3365 . . . . 5  |-  ( w  =  W  ->  (
x  i^i  ( Base `  w ) )  =  ( x  i^i  ( Base `  W ) ) )
1514opeq2d 3816 . . . 4  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>.  =  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  W ) ) >.
)
1612, 15oveq12d 5943 . . 3  |-  ( w  =  W  ->  (
w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w
) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  W ) )
>. ) )
17 ineq1 3358 . . . . 5  |-  ( x  =  A  ->  (
x  i^i  ( Base `  W ) )  =  ( A  i^i  ( Base `  W ) ) )
1817opeq2d 3816 . . . 4  |-  ( x  =  A  ->  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  W ) )
>.  =  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
)
1918oveq2d 5941 . . 3  |-  ( x  =  A  ->  ( W sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  W
) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) )
20 df-iress 12713 . . 3  |-s  =  ( w  e.  _V ,  x  e. 
_V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
2116, 19, 20ovmpog 6061 . 2  |-  ( ( W  e.  _V  /\  A  e.  _V  /\  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )  e.  _V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
222, 4, 11, 21syl3anc 1249 1  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156   <.cop 3626   ` cfv 5259  (class class class)co 5925   NNcn 9009   ndxcnx 12702   sSet csts 12703   Basecbs 12705   ↾s cress 12706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9010  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713
This theorem is referenced by:  ressex  12770  ressval2  12771  ressbasd  12772  strressid  12776  ressval3d  12777  resseqnbasd  12778  ressinbasd  12779  ressressg  12780  mgpress  13565
  Copyright terms: Public domain W3C validator