ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressvalsets Unicode version

Theorem ressvalsets 12682
Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
Assertion
Ref Expression
ressvalsets  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)

Proof of Theorem ressvalsets
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
21adantr 276 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  W  e.  _V )
3 elex 2771 . . 3  |-  ( A  e.  Y  ->  A  e.  _V )
43adantl 277 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  A  e.  _V )
5 simpl 109 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  W  e.  X )
6 basendxnn 12674 . . . 4  |-  ( Base `  ndx )  e.  NN
76a1i 9 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Base `  ndx )  e.  NN )
8 inex1g 4165 . . . 4  |-  ( A  e.  Y  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
98adantl 277 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
10 setsex 12650 . . 3  |-  ( ( W  e.  X  /\  ( Base `  ndx )  e.  NN  /\  ( A  i^i  ( Base `  W
) )  e.  _V )  ->  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. )  e.  _V )
115, 7, 9, 10syl3anc 1249 . 2  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. )  e.  _V )
12 id 19 . . . 4  |-  ( w  =  W  ->  w  =  W )
13 fveq2 5554 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
1413ineq2d 3360 . . . . 5  |-  ( w  =  W  ->  (
x  i^i  ( Base `  w ) )  =  ( x  i^i  ( Base `  W ) ) )
1514opeq2d 3811 . . . 4  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>.  =  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  W ) ) >.
)
1612, 15oveq12d 5936 . . 3  |-  ( w  =  W  ->  (
w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w
) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  W ) )
>. ) )
17 ineq1 3353 . . . . 5  |-  ( x  =  A  ->  (
x  i^i  ( Base `  W ) )  =  ( A  i^i  ( Base `  W ) ) )
1817opeq2d 3811 . . . 4  |-  ( x  =  A  ->  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  W ) )
>.  =  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
)
1918oveq2d 5934 . . 3  |-  ( x  =  A  ->  ( W sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  W
) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) )
20 df-iress 12626 . . 3  |-s  =  ( w  e.  _V ,  x  e. 
_V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
2116, 19, 20ovmpog 6053 . 2  |-  ( ( W  e.  _V  /\  A  e.  _V  /\  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )  e.  _V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
222, 4, 11, 21syl3anc 1249 1  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152   <.cop 3621   ` cfv 5254  (class class class)co 5918   NNcn 8982   ndxcnx 12615   sSet csts 12616   Basecbs 12618   ↾s cress 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626
This theorem is referenced by:  ressex  12683  ressval2  12684  ressbasd  12685  strressid  12689  ressval3d  12690  resseqnbasd  12691  ressinbasd  12692  ressressg  12693  mgpress  13427
  Copyright terms: Public domain W3C validator