| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressvalsets | Unicode version | ||
| Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressvalsets |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | elex 2811 |
. . 3
| |
| 4 | 3 | adantl 277 |
. 2
|
| 5 | simpl 109 |
. . 3
| |
| 6 | basendxnn 13088 |
. . . 4
| |
| 7 | 6 | a1i 9 |
. . 3
|
| 8 | inex1g 4220 |
. . . 4
| |
| 9 | 8 | adantl 277 |
. . 3
|
| 10 | setsex 13064 |
. . 3
| |
| 11 | 5, 7, 9, 10 | syl3anc 1271 |
. 2
|
| 12 | id 19 |
. . . 4
| |
| 13 | fveq2 5627 |
. . . . . 6
| |
| 14 | 13 | ineq2d 3405 |
. . . . 5
|
| 15 | 14 | opeq2d 3864 |
. . . 4
|
| 16 | 12, 15 | oveq12d 6019 |
. . 3
|
| 17 | ineq1 3398 |
. . . . 5
| |
| 18 | 17 | opeq2d 3864 |
. . . 4
|
| 19 | 18 | oveq2d 6017 |
. . 3
|
| 20 | df-iress 13040 |
. . 3
| |
| 21 | 16, 19, 20 | ovmpog 6139 |
. 2
|
| 22 | 2, 4, 11, 21 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 |
| This theorem is referenced by: ressex 13098 ressval2 13099 ressbasd 13100 strressid 13104 ressval3d 13105 resseqnbasd 13106 ressinbasd 13107 ressressg 13108 mgpress 13894 |
| Copyright terms: Public domain | W3C validator |