ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brstruct Unicode version

Theorem brstruct 12885
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct  |-  Rel Struct

Proof of Theorem brstruct
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 12878 . 2  |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f  \  { (/)
} )  /\  dom  f  C_  ( ... `  x
) ) }
21relopabi 4807 1  |-  Rel Struct
Colors of variables: wff set class
Syntax hints:    /\ w3a 981    e. wcel 2177    \ cdif 3164    i^i cin 3166    C_ wss 3167   (/)c0 3461   {csn 3634    X. cxp 4677   dom cdm 4679   Rel wrel 4684   Fun wfun 5270   ` cfv 5276    <_ cle 8115   NNcn 9043   ...cfz 10137   Struct cstr 12872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-opab 4110  df-xp 4685  df-rel 4686  df-struct 12878
This theorem is referenced by:  isstruct2im  12886  structex  12888
  Copyright terms: Public domain W3C validator