ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brstruct Unicode version

Theorem brstruct 12627
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct  |-  Rel Struct

Proof of Theorem brstruct
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 12620 . 2  |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f  \  { (/)
} )  /\  dom  f  C_  ( ... `  x
) ) }
21relopabi 4787 1  |-  Rel Struct
Colors of variables: wff set class
Syntax hints:    /\ w3a 980    e. wcel 2164    \ cdif 3150    i^i cin 3152    C_ wss 3153   (/)c0 3446   {csn 3618    X. cxp 4657   dom cdm 4659   Rel wrel 4664   Fun wfun 5248   ` cfv 5254    <_ cle 8055   NNcn 8982   ...cfz 10074   Struct cstr 12614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-rel 4666  df-struct 12620
This theorem is referenced by:  isstruct2im  12628  structex  12630
  Copyright terms: Public domain W3C validator