ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brstruct Unicode version

Theorem brstruct 13007
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct  |-  Rel Struct

Proof of Theorem brstruct
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 13000 . 2  |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f  \  { (/)
} )  /\  dom  f  C_  ( ... `  x
) ) }
21relopabi 4824 1  |-  Rel Struct
Colors of variables: wff set class
Syntax hints:    /\ w3a 983    e. wcel 2180    \ cdif 3174    i^i cin 3176    C_ wss 3177   (/)c0 3471   {csn 3646    X. cxp 4694   dom cdm 4696   Rel wrel 4701   Fun wfun 5288   ` cfv 5294    <_ cle 8150   NNcn 9078   ...cfz 10172   Struct cstr 12994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-opab 4125  df-xp 4702  df-rel 4703  df-struct 13000
This theorem is referenced by:  isstruct2im  13008  structex  13010
  Copyright terms: Public domain W3C validator