ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brstruct Unicode version

Theorem brstruct 12412
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct  |-  Rel Struct

Proof of Theorem brstruct
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 12405 . 2  |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f  \  { (/)
} )  /\  dom  f  C_  ( ... `  x
) ) }
21relopabi 4735 1  |-  Rel Struct
Colors of variables: wff set class
Syntax hints:    /\ w3a 973    e. wcel 2141    \ cdif 3118    i^i cin 3120    C_ wss 3121   (/)c0 3414   {csn 3581    X. cxp 4607   dom cdm 4609   Rel wrel 4614   Fun wfun 5190   ` cfv 5196    <_ cle 7942   NNcn 8865   ...cfz 9952   Struct cstr 12399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-opab 4049  df-xp 4615  df-rel 4616  df-struct 12405
This theorem is referenced by:  isstruct2im  12413  structex  12415
  Copyright terms: Public domain W3C validator