HomeHome Intuitionistic Logic Explorer
Theorem List (p. 125 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12401-12500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlmfpm 12401 If  F converges, then  F is a partial function. (Contributed by Mario Carneiro, 23-Dec-2013.)
 |-  ( ( J  e.  (TopOn `  X )  /\  F ( ~~> t `  J ) P ) 
 ->  F  e.  ( X 
 ^pm  CC ) )
 
Theoremlmfss 12402 Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  ( ( J  e.  (TopOn `  X )  /\  F ( ~~> t `  J ) P ) 
 ->  F  C_  ( CC  X.  X ) )
 
Theoremlmcl 12403 Closure of a limit. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  ( ( J  e.  (TopOn `  X )  /\  F ( ~~> t `  J ) P ) 
 ->  P  e.  X )
 
Theoremlmss 12404 Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
 |-  K  =  ( Jt  Y )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  J  e.  Top )   &    |-  ( ph  ->  P  e.  Y )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F : Z --> Y )   =>    |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )
 
Theoremsslm 12405 A finer topology has fewer convergent sequences (but the sequences that do converge, converge to the same value). (Contributed by Mario Carneiro, 15-Sep-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( ~~> t `  K )  C_  ( ~~> t `  J ) )
 
Theoremlmres 12406 A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  F  e.  ( X  ^pm  CC ) )   &    |-  ( ph  ->  M  e.  ZZ )   =>    |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M ) ) ( ~~> t `  J ) P ) )
 
Theoremlmff 12407* If  F converges, there is some upper integer set on which 
F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  dom  (
 ~~> t `  J ) )   =>    |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
 
Theoremlmtopcnp 12408 The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
 |-  ( ph  ->  F (
 ~~> t `  J ) P )   &    |-  ( ph  ->  K  e.  Top )   &    |-  ( ph  ->  G  e.  (
 ( J  CnP  K ) `  P ) )   =>    |-  ( ph  ->  ( G  o.  F ) ( ~~> t `  K ) ( G `
  P ) )
 
Theoremlmcn 12409 The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
 |-  ( ph  ->  F (
 ~~> t `  J ) P )   &    |-  ( ph  ->  G  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  ( G  o.  F ) ( ~~> t `  K ) ( G `  P ) )
 
7.1.8  Product topologies
 
Syntaxctx 12410 Extend class notation with the binary topological product operation.
 class  tX
 
Definitiondf-tx 12411* Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  tX  =  ( r  e.  _V ,  s  e. 
 _V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
 ) ) ) )
 
Theoremtxvalex 12412 Existence of the binary topological product. If  R and 
S are known to be topologies, see txtop 12418. (Contributed by Jim Kingdon, 3-Aug-2023.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S )  e.  _V )
 
Theoremtxval 12413* Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   =>    |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S )  =  ( topGen `
  B ) )
 
Theoremtxuni2 12414* The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   &    |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( X  X.  Y )  =  U. B
 
Theoremtxbasex 12415* The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   =>    |-  ( ( R  e.  V  /\  S  e.  W )  ->  B  e.  _V )
 
Theoremtxbas 12416* The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   =>    |-  ( ( R  e.  TopBases  /\  S  e.  TopBases )  ->  B  e.  TopBases )
 
Theoremeltx 12417* A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
 |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y )  /\  ( x  X.  y
 )  C_  S )
 ) )
 
Theoremtxtop 12418 The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S )  e.  Top )
 
Theoremtxtopi 12419 The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.)
 |-  R  e.  Top   &    |-  S  e.  Top   =>    |-  ( R  tX  S )  e.  Top
 
Theoremtxtopon 12420 The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( R 
 tX  S )  e.  (TopOn `  ( X  X.  Y ) ) )
 
Theoremtxuni 12421 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y )  =  U. ( R 
 tX  S ) )
 
Theoremtxunii 12422 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.)
 |-  R  e.  Top   &    |-  S  e.  Top   &    |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( X  X.  Y )  =  U. ( R 
 tX  S )
 
Theoremtxopn 12423 The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  R  /\  B  e.  S )
 )  ->  ( A  X.  B )  e.  ( R  tX  S ) )
 
Theoremtxss12 12424 Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( ( B  e.  V  /\  D  e.  W )  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ( A  tX  C ) 
 C_  ( B  tX  D ) )
 
Theoremtxbasval 12425 It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( ( topGen `  R )  tX  ( topGen `  S ) )  =  ( R  tX  S ) )
 
Theoremneitx 12426 The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  (
 ( nei `  K ) `  D ) ) ) 
 ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `  ( C  X.  D ) ) )
 
Theoremtx1cn 12427 Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( 1st  |`  ( X  X.  Y ) )  e.  (
 ( R  tX  S )  Cn  R ) )
 
Theoremtx2cn 12428 Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( 2nd  |`  ( X  X.  Y ) )  e.  (
 ( R  tX  S )  Cn  S ) )
 
Theoremtxcnp 12429* If two functions are continuous at 
D, then the ordered pair of them is continuous at  D into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  L  e.  (TopOn `  Z )
 )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( ( J  CnP  K ) `
  D ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( ( J  CnP  L ) `  D ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  <. A ,  B >. )  e.  (
 ( J  CnP  ( K  tX  L ) ) `
  D ) )
 
Theoremupxp 12430* Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  P  =  ( 1st  |`  ( B  X.  C ) )   &    |-  Q  =  ( 2nd  |`  ( B  X.  C ) )   =>    |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  E! h ( h : A
 --> ( B  X.  C )  /\  F  =  ( P  o.  h ) 
 /\  G  =  ( Q  o.  h ) ) )
 
Theoremtxcnmpt 12431* A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  W  =  U. U   &    |-  H  =  ( x  e.  W  |->  <.
 ( F `  x ) ,  ( G `  x ) >. )   =>    |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H  e.  ( U  Cn  ( R  tX  S ) ) )
 
Theoremuptx 12432* Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  T  =  ( R 
 tX  S )   &    |-  X  =  U. R   &    |-  Y  =  U. S   &    |-  Z  =  ( X  X.  Y )   &    |-  P  =  ( 1st  |`  Z )   &    |-  Q  =  ( 2nd  |`  Z )   =>    |-  ( ( F  e.  ( U  Cn  R ) 
 /\  G  e.  ( U  Cn  S ) ) 
 ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
 
Theoremtxcn 12433 A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  X  =  U. R   &    |-  Y  =  U. S   &    |-  Z  =  ( X  X.  Y )   &    |-  W  =  U. U   &    |-  P  =  ( 1st  |`  Z )   &    |-  Q  =  ( 2nd  |`  Z )   =>    |-  ( ( R  e.  Top  /\  S  e.  Top  /\  F : W --> Z ) 
 ->  ( F  e.  ( U  Cn  ( R  tX  S ) )  <->  ( ( P  o.  F )  e.  ( U  Cn  R )  /\  ( Q  o.  F )  e.  ( U  Cn  S ) ) ) )
 
Theoremtxrest 12434 The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
 )  ->  ( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A )  tX  ( St  B ) ) )
 
Theoremtxdis 12435 The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX 
 ~P B )  =  ~P ( A  X.  B ) )
 
Theoremtxdis1cn 12436* A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  J  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  K  e.  Top )   &    |-  ( ph  ->  F  Fn  ( X  X.  Y ) )   &    |-  ( ( ph  /\  x  e.  X )  ->  (
 y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  F  e.  ( ( ~P X  tX  J )  Cn  K ) )
 
Theoremtxlm 12437* Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  F : Z --> X )   &    |-  ( ph  ->  G : Z --> Y )   &    |-  H  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )   =>    |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  H ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. ) )
 
Theoremlmcn2 12438* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  F : Z --> X )   &    |-  ( ph  ->  G : Z --> Y )   &    |-  ( ph  ->  F ( ~~> t `  J ) R )   &    |-  ( ph  ->  G ( ~~> t `  K ) S )   &    |-  ( ph  ->  O  e.  ( ( J 
 tX  K )  Cn  N ) )   &    |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )   =>    |-  ( ph  ->  H (
 ~~> t `  N ) ( R O S ) )
 
7.1.9  Continuous function-builders
 
Theoremcnmptid 12439* The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   =>    |-  ( ph  ->  ( x  e.  X  |->  x )  e.  ( J  Cn  J ) )
 
Theoremcnmptc 12440* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  P  e.  Y )   =>    |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
 
Theoremcnmpt11 12441* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  ( y  e.  Y  |->  B )  e.  ( K  Cn  L ) )   &    |-  ( y  =  A  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  X  |->  C )  e.  ( J  Cn  L ) )
 
Theoremcnmpt11f 12442* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  F  e.  ( K  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( F `  A ) )  e.  ( J  Cn  L ) )
 
Theoremcnmpt1t 12443* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  <. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
 
Theoremcnmpt12f 12444* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   &    |-  ( ph  ->  F  e.  ( ( K 
 tX  L )  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
 
Theoremcnmpt12 12445* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  L  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  ( y  e.  Y ,  z  e.  Z  |->  C )  e.  ( ( K 
 tX  L )  Cn  M ) )   &    |-  (
 ( y  =  A  /\  z  =  B )  ->  C  =  D )   =>    |-  ( ph  ->  ( x  e.  X  |->  D )  e.  ( J  Cn  M ) )
 
Theoremcnmpt1st 12446* The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J 
 tX  K )  Cn  J ) )
 
Theoremcnmpt2nd 12447* The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J 
 tX  K )  Cn  K ) )
 
Theoremcnmpt2c 12448* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  L  e.  (TopOn `  Z )
 )   &    |-  ( ph  ->  P  e.  Z )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J 
 tX  K )  Cn  L ) )
 
Theoremcnmpt21 12449* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  L  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )   &    |-  ( z  =  A  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  e.  ( ( J 
 tX  K )  Cn  M ) )
 
Theoremcnmpt21f 12450* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  F  e.  ( L  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( F `  A ) )  e.  ( ( J  tX  K )  Cn  M ) )
 
Theoremcnmpt2t 12451* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  <. A ,  B >. )  e.  (
 ( J  tX  K )  Cn  ( L  tX  M ) ) )
 
Theoremcnmpt22 12452* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M ) )   &    |-  ( ph  ->  L  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  M  e.  (TopOn `  W ) )   &    |-  ( ph  ->  ( z  e.  Z ,  w  e.  W  |->  C )  e.  ( ( L 
 tX  M )  Cn  N ) )   &    |-  (
 ( z  =  A  /\  w  =  B )  ->  C  =  D )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  D )  e.  ( ( J 
 tX  K )  Cn  N ) )
 
Theoremcnmpt22f 12453* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M ) )   &    |-  ( ph  ->  F  e.  ( ( L 
 tX  M )  Cn  N ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J 
 tX  K )  Cn  N ) )
 
Theoremcnmpt1res 12454* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.)
 |-  K  =  ( Jt  Y )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  Y 
 C_  X )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  Y  |->  A )  e.  ( K  Cn  L ) )
 
Theoremcnmpt2res 12455* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  K  =  ( Jt  Y )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  Y 
 C_  X )   &    |-  N  =  ( Mt  W )   &    |-  ( ph  ->  M  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  W 
 C_  Z )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M )  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K 
 tX  N )  Cn  L ) )
 
Theoremcnmptcom 12456* The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   =>    |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K 
 tX  J )  Cn  L ) )
 
Theoremimasnopn 12457 If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
 |-  X  =  U. J   =>    |-  (
 ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X )
 )  ->  ( R " { A } )  e.  K )
 
7.1.10  Homeomorphisms
 
Syntaxchmeo 12458 Extend class notation with the class of all homeomorphisms.
 class  Homeo
 
Definitiondf-hmeo 12459* Function returning all the homeomorphisms from topology  j to topology  k. (Contributed by FL, 14-Feb-2007.)
 |- 
 Homeo  =  ( j  e.  Top ,  k  e. 
 Top  |->  { f  e.  (
 j  Cn  k )  |  `' f  e.  (
 k  Cn  j ) } )
 
Theoremhmeofn 12460 The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |- 
 Homeo  Fn  ( Top  X.  Top )
 
Theoremhmeofvalg 12461* The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J Homeo K )  =  { f  e.  ( J  Cn  K )  |  `' f  e.  ( K  Cn  J ) } )
 
Theoremishmeo 12462 The predicate F is a homeomorphism between topology  J and topology  K. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K ) 
 /\  `' F  e.  ( K  Cn  J ) ) )
 
Theoremhmeocn 12463 A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K ) )
 
Theoremhmeocnvcn 12464 The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J ) )
 
Theoremhmeocnv 12465 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K Homeo J ) )
 
Theoremhmeof1o2 12466 A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) ) 
 ->  F : X -1-1-onto-> Y )
 
Theoremhmeof1o 12467 A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( F  e.  ( J Homeo K )  ->  F : X -1-1-onto-> Y )
 
Theoremhmeoima 12468 The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( F  e.  ( J Homeo K )  /\  A  e.  J )  ->  ( F " A )  e.  K )
 
Theoremhmeoopn 12469 Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  <->  ( F " A )  e.  K ) )
 
Theoremhmeocld 12470 Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  ( Clsd `  K ) ) )
 
Theoremhmeontr 12471 Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( ( int `  K ) `  ( F " A ) )  =  ( F " (
 ( int `  J ) `  A ) ) )
 
Theoremhmeoimaf1o 12472* The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  G  =  ( x  e.  J  |->  ( F
 " x ) )   =>    |-  ( F  e.  ( J Homeo K )  ->  G : J -1-1-onto-> K )
 
Theoremhmeores 12473 The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y ) Homeo ( Kt  ( F
 " Y ) ) ) )
 
Theoremhmeoco 12474 The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( F  e.  ( J Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )
 
Theoremidhmeo 12475 The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( J  e.  (TopOn `  X )  ->  (  _I  |`  X )  e.  ( J Homeo J ) )
 
Theoremhmeocnvb 12476 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
 |-  ( Rel  F  ->  ( `' F  e.  ( J Homeo K )  <->  F  e.  ( K Homeo J ) ) )
 
Theoremtxhmeo 12477* Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( J Homeo L ) )   &    |-  ( ph  ->  G  e.  ( K Homeo M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  <. ( F `
  x ) ,  ( G `  y
 ) >. )  e.  (
 ( J  tX  K ) Homeo ( L  tX  M ) ) )
 
Theoremtxswaphmeolem 12478* Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
 
Theoremtxswaphmeo 12479* There is a homeomorphism from  X  X.  Y to  Y  X.  X. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K ) Homeo ( K  tX  J ) ) )
 
7.2  Metric spaces
 
7.2.1  Pseudometric spaces
 
Theorempsmetrel 12480 The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
 |- 
 Rel PsMet
 
Theoremispsmet 12481* Express the predicate " D is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X )  <->  ( D :
 ( X  X.  X )
 --> RR*  /\  A. x  e.  X  ( ( x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x D y )  <_  (
 ( z D x ) +e ( z D y ) ) ) ) ) )
 
Theorempsmetdmdm 12482 Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  X  =  dom  dom  D )
 
Theorempsmetf 12483 The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  D : ( X  X.  X ) --> RR* )
 
Theorempsmetcl 12484 Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR* )
 
Theorempsmet0 12485 The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )
 
Theorempsmettri2 12486 Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  <_  (
 ( C D A ) +e ( C D B ) ) )
 
Theorempsmetsym 12487 The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
 
Theorempsmettri 12488 Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C ) +e ( C D B ) ) )
 
Theorempsmetge0 12489 The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
 
Theorempsmetxrge0 12490 The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  D : ( X  X.  X ) --> ( 0 [,] +oo ) )
 
Theorempsmetres2 12491 Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  (PsMet `  R ) )
 
Theorempsmetlecl 12492 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X ) 
 /\  ( C  e.  RR  /\  ( A D B )  <_  C ) )  ->  ( A D B )  e.  RR )
 
Theoremdistspace 12493 A set  X together with a (distance) function  D which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set  X equipped with a distance  D, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( ( D :
 ( X  X.  X )
 --> RR*  /\  ( A D A )  =  0 )  /\  ( 0 
 <_  ( A D B )  /\  ( A D B )  =  ( B D A ) ) ) )
 
7.2.2  Basic metric space properties
 
Syntaxcxms 12494 Extend class notation with the class of extended metric spaces.
 class  *MetSp
 
Syntaxcms 12495 Extend class notation with the class of metric spaces.
 class  MetSp
 
Syntaxctms 12496 Extend class notation with the function mapping a metric to the metric space it defines.
 class toMetSp
 
Definitiondf-xms 12497 Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- 
 *MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  ( MetOpen `  ( ( dist `  f
 )  |`  ( ( Base `  f )  X.  ( Base `  f ) ) ) ) }
 
Definitiondf-ms 12498 Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.)
 |- 
 MetSp  =  { f  e.  *MetSp  |  (
 ( dist `  f )  |`  ( ( Base `  f
 )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f ) ) }
 
Definitiondf-tms 12499 Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- toMetSp  =  ( d  e.  U. ran  *Met  |->  ( { <. ( Base `  ndx ) , 
 dom  dom  d >. ,  <. (
 dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
 
Theoremmetrel 12500 The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
 |- 
 Rel  Met
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >