ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmress Unicode version

Theorem reldmress 12681
Description: The structure restriction is a proper operator, so it can be used with ovprc1 5954. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress  |-  Rel  doms

Proof of Theorem reldmress
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iress 12626 . 2  |-s  =  ( y  e.  _V ,  x  e. 
_V  |->  ( y sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  y ) )
>. ) )
21reldmmpo 6030 1  |-  Rel  doms
Colors of variables: wff set class
Syntax hints:   _Vcvv 2760    i^i cin 3152   <.cop 3621   dom cdm 4659   Rel wrel 4664   ` cfv 5254  (class class class)co 5918   ndxcnx 12615   sSet csts 12616   Basecbs 12618   ↾s cress 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-dm 4669  df-oprab 5922  df-mpo 5923  df-iress 12626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator