ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmress Unicode version

Theorem reldmress 13010
Description: The structure restriction is a proper operator, so it can be used with ovprc1 6004. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress  |-  Rel  doms

Proof of Theorem reldmress
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iress 12955 . 2  |-s  =  ( y  e.  _V ,  x  e. 
_V  |->  ( y sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  y ) )
>. ) )
21reldmmpo 6080 1  |-  Rel  doms
Colors of variables: wff set class
Syntax hints:   _Vcvv 2776    i^i cin 3173   <.cop 3646   dom cdm 4693   Rel wrel 4698   ` cfv 5290  (class class class)co 5967   ndxcnx 12944   sSet csts 12945   Basecbs 12947   ↾s cress 12948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-dm 4703  df-oprab 5971  df-mpo 5972  df-iress 12955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator