Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reldmress | Unicode version |
Description: The structure restriction is a proper operator, so it can be used with ovprc1 5878. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
reldmress | ↾s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ress 12402 | . 2 ↾s sSet | |
2 | 1 | reldmmpo 5953 | 1 ↾s |
Colors of variables: wff set class |
Syntax hints: cvv 2726 cin 3115 wss 3116 cif 3520 cop 3579 cdm 4604 wrel 4609 cfv 5188 (class class class)co 5842 cnx 12391 sSet csts 12392 cbs 12394 ↾s cress 12395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-dm 4614 df-oprab 5846 df-mpo 5847 df-ress 12402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |