ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmress Unicode version

Theorem reldmress 12453
Description: The structure restriction is a proper operator, so it can be used with ovprc1 5878. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress  |-  Rel  doms

Proof of Theorem reldmress
Dummy variables  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ress 12402 . 2  |-s  =  ( w  e.  _V ,  a  e. 
_V  |->  if ( (
Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. ) ) )
21reldmmpo 5953 1  |-  Rel  doms
Colors of variables: wff set class
Syntax hints:   _Vcvv 2726    i^i cin 3115    C_ wss 3116   ifcif 3520   <.cop 3579   dom cdm 4604   Rel wrel 4609   ` cfv 5188  (class class class)co 5842   ndxcnx 12391   sSet csts 12392   Basecbs 12394   ↾s cress 12395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614  df-oprab 5846  df-mpo 5847  df-ress 12402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator