ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsval Unicode version

Theorem lgsval 15566
Description: Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
lgsval  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
Distinct variable groups:    A, n    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsval
Dummy variables  a  m  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 9429 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  1  e.  ZZ )
2 0zd 9414 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  0  e.  ZZ )
3 zsqcl 10787 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
43ad2antrr 488 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( A ^ 2 )  e.  ZZ )
5 zdceq 9478 . . . . 5  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
64, 1, 5syl2anc 411 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  -> DECID  ( A ^ 2 )  =  1 )
71, 2, 6ifcldcd 3613 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  e.  ZZ )
8 neg1z 9434 . . . . . 6  |-  -u 1  e.  ZZ
98a1i 9 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  -u 1  e.  ZZ )
10 1zzd 9429 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  1  e.  ZZ )
11 simpr 110 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
12 0zd 9414 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  0  e.  ZZ )
13 zdclt 9480 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
1411, 12, 13syl2an2r 595 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  -> DECID  N  <  0
)
15 simpl 109 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  ZZ )
16 zdclt 9480 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
1715, 12, 16syl2an2r 595 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  -> DECID  A  <  0
)
18 dcan2 937 . . . . . 6  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
1914, 17, 18sylc 62 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  -> DECID  ( N  <  0  /\  A  <  0
) )
209, 10, 19ifcldcd 3613 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
21 nnuz 9714 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
22 lgsval.1 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
23 eleq1w 2267 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
24 eqeq1 2213 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
n  =  2  <->  k  =  2 ) )
25 oveq1 5969 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  (
n  -  1 )  =  ( k  - 
1 ) )
2625oveq1d 5977 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
( n  -  1 )  /  2 )  =  ( ( k  -  1 )  / 
2 ) )
2726oveq2d 5978 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( A ^ ( ( n  -  1 )  / 
2 ) )  =  ( A ^ (
( k  -  1 )  /  2 ) ) )
2827oveq1d 5977 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  =  ( ( A ^ ( ( k  -  1 )  / 
2 ) )  +  1 ) )
29 id 19 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  n  =  k )
3028, 29oveq12d 5980 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  =  ( ( ( A ^ ( ( k  -  1 )  /  2 ) )  +  1 )  mod  k ) )
3130oveq1d 5977 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 )  =  ( ( ( ( A ^ (
( k  -  1 )  /  2 ) )  +  1 )  mod  k )  - 
1 ) )
3224, 31ifbieq2d 3600 . . . . . . . . . 10  |-  ( n  =  k  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  =  if ( k  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( k  -  1 )  /  2 ) )  +  1 )  mod  k )  - 
1 ) ) )
33 oveq1 5969 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  pCnt  N )  =  ( k  pCnt  N ) )
3432, 33oveq12d 5980 . . . . . . . . 9  |-  ( n  =  k  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  =  ( if ( k  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( k  -  1 )  / 
2 ) )  +  1 )  mod  k
)  -  1 ) ) ^ ( k 
pCnt  N ) ) )
3523, 34ifbieq1d 3598 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  =  if ( k  e.  Prime ,  ( if ( k  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( k  -  1 )  /  2 ) )  +  1 )  mod  k )  - 
1 ) ) ^
( k  pCnt  N
) ) ,  1 ) )
36 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  ->  k  e.  NN )
37 0zd 9414 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  k  =  2 )  -> 
0  e.  ZZ )
38 1zzd 9429 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  k  =  2 )  -> 
1  e.  ZZ )
3938znegcld 9527 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  k  =  2 )  ->  -u 1  e.  ZZ )
40 id 19 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
41 8nn 9234 . . . . . . . . . . . . . . . . . . . 20  |-  8  e.  NN
4241a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ZZ  ->  8  e.  NN )
4340, 42zmodcld 10522 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e. 
NN0 )
4443nn0zd 9523 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e.  ZZ )
45 1zzd 9429 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  1  e.  ZZ )
46 zdceq 9478 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
4744, 45, 46syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  1 )
48 7nn 9233 . . . . . . . . . . . . . . . . . 18  |-  7  e.  NN
4948nnzi 9423 . . . . . . . . . . . . . . . . 17  |-  7  e.  ZZ
50 zdceq 9478 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
5144, 49, 50sylancl 413 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  7 )
52 dcor 938 . . . . . . . . . . . . . . . 16  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5347, 51, 52sylc 62 . . . . . . . . . . . . . . 15  |-  ( A  e.  ZZ  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
54 elprg 3658 . . . . . . . . . . . . . . . . 17  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5543, 54syl 14 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5655dcbid 840 . . . . . . . . . . . . . . 15  |-  ( A  e.  ZZ  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5753, 56mpbird 167 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
5857ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  k  =  2 )  -> DECID  ( A  mod  8 )  e. 
{ 1 ,  7 } )
5938, 39, 58ifcldcd 3613 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  k  =  2 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  ZZ )
60 2nn 9228 . . . . . . . . . . . . . 14  |-  2  e.  NN
6160a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  k  =  2 )  -> 
2  e.  NN )
62 simp-5l 543 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  k  =  2 )  ->  A  e.  ZZ )
63 dvdsdc 12194 . . . . . . . . . . . . 13  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
6461, 62, 63syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  k  =  2 )  -> DECID  2  ||  A )
6537, 59, 64ifcldcd 3613 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  k  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  ZZ )
66 simp-5l 543 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  A  e.  ZZ )
67 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  -.  k  = 
2 )
68 prm2orodd 12533 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Prime  ->  ( k  =  2  \/  -.  2  ||  k ) )
6968orcomd 731 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  Prime  ->  ( -.  2  ||  k  \/  k  =  2 ) )
7069ad2antlr 489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  ( -.  2  ||  k  \/  k  =  2 ) )
7167, 70ecased 1362 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  -.  2  ||  k )
72 prmnn 12517 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Prime  ->  k  e.  NN )
7372nnnn0d 9378 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  Prime  ->  k  e. 
NN0 )
74 nn0oddm1d2 12305 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( -.  2  ||  k  <->  ( (
k  -  1 )  /  2 )  e. 
NN0 ) )
7573, 74syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  Prime  ->  ( -.  2  ||  k  <->  ( (
k  -  1 )  /  2 )  e. 
NN0 ) )
7675ad2antlr 489 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  ( -.  2  ||  k  <->  ( ( k  -  1 )  / 
2 )  e.  NN0 ) )
7771, 76mpbid 147 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  ( ( k  -  1 )  / 
2 )  e.  NN0 )
78 zexpcl 10731 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  ( ( k  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( k  -  1 )  /  2 ) )  e.  ZZ )
7966, 77, 78syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  ( A ^
( ( k  - 
1 )  /  2
) )  e.  ZZ )
8079peano2zd 9528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  ( ( A ^ ( ( k  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
8136ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  k  e.  NN )
8280, 81zmodcld 10522 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  ( ( ( A ^ ( ( k  -  1 )  /  2 ) )  +  1 )  mod  k )  e.  NN0 )
8382nn0zd 9523 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  ( ( ( A ^ ( ( k  -  1 )  /  2 ) )  +  1 )  mod  k )  e.  ZZ )
84 1zzd 9429 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  1  e.  ZZ )
8583, 84zsubcld 9530 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  /\  -.  k  =  2 )  ->  ( ( ( ( A ^ (
( k  -  1 )  /  2 ) )  +  1 )  mod  k )  - 
1 )  e.  ZZ )
86 nnz 9421 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  ZZ )
8786ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  k  e.  ZZ )
88 2z 9430 . . . . . . . . . . . 12  |-  2  e.  ZZ
89 zdceq 9478 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  2  e.  ZZ )  -> DECID  k  =  2 )
9087, 88, 89sylancl 413 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  -> DECID 
k  =  2 )
9165, 85, 90ifcldadc 3605 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  if ( k  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( k  -  1 )  /  2 ) )  +  1 )  mod  k )  -  1 ) )  e.  ZZ )
92 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  k  e.  Prime )
93 simp-4r 542 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  N  e.  ZZ )
94 neqne 2385 . . . . . . . . . . . 12  |-  ( -.  N  =  0  ->  N  =/=  0 )
9594ad3antlr 493 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  N  =/=  0
)
96 pczcl 12706 . . . . . . . . . . 11  |-  ( ( k  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  N
)  e.  NN0 )
9792, 93, 95, 96syl12anc 1248 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  ( k  pCnt  N )  e.  NN0 )
98 zexpcl 10731 . . . . . . . . . 10  |-  ( ( if ( k  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( k  -  1 )  / 
2 ) )  +  1 )  mod  k
)  -  1 ) )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( if ( k  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( k  -  1 )  /  2 ) )  +  1 )  mod  k )  -  1 ) ) ^ (
k  pCnt  N )
)  e.  ZZ )
9991, 97, 98syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  ( if ( k  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( k  -  1 )  /  2 ) )  +  1 )  mod  k )  -  1 ) ) ^ (
k  pCnt  N )
)  e.  ZZ )
100 1zzd 9429 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  /\  -.  k  e. 
Prime )  ->  1  e.  ZZ )
101 prmdc 12537 . . . . . . . . . 10  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
102101adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  -> DECID 
k  e.  Prime )
10399, 100, 102ifcldadc 3605 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  ->  if ( k  e.  Prime ,  ( if ( k  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( k  -  1 )  /  2 ) )  +  1 )  mod  k )  - 
1 ) ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
10422, 35, 36, 103fvmptd3 5691 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  ->  ( F `  k )  =  if ( k  e.  Prime ,  ( if ( k  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( k  -  1 )  /  2 ) )  +  1 )  mod  k )  -  1 ) ) ^ (
k  pCnt  N )
) ,  1 ) )
105104, 103eqeltrd 2283 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  k  e.  NN )  ->  ( F `  k )  e.  ZZ )
106 zmulcl 9456 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
107106adantl 277 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( k  x.  v
)  e.  ZZ )
10821, 10, 105, 107seqf 10641 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  seq 1 (  x.  ,  F ) : NN --> ZZ )
109 simplr 528 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
11094adantl 277 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  =/=  0 )
111 nnabscl 11496 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
112109, 110, 111syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( abs `  N )  e.  NN )
113108, 112ffvelcdmd 5734 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  ZZ )
11420, 113zmulcld 9531 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) )  e.  ZZ )
115 0zd 9414 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
116 zdceq 9478 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
11711, 115, 116syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0 )
1187, 114, 117ifcldadc 3605 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
 ( abs `  N
) ) ) )  e.  ZZ )
119 simpr 110 . . . . 5  |-  ( ( a  =  A  /\  m  =  N )  ->  m  =  N )
120119eqeq1d 2215 . . . 4  |-  ( ( a  =  A  /\  m  =  N )  ->  ( m  =  0  <-> 
N  =  0 ) )
121 simpl 109 . . . . . . 7  |-  ( ( a  =  A  /\  m  =  N )  ->  a  =  A )
122121oveq1d 5977 . . . . . 6  |-  ( ( a  =  A  /\  m  =  N )  ->  ( a ^ 2 )  =  ( A ^ 2 ) )
123122eqeq1d 2215 . . . . 5  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( a ^
2 )  =  1  <-> 
( A ^ 2 )  =  1 ) )
124123ifbid 3597 . . . 4  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( ( a ^ 2 )  =  1 ,  1 ,  0 )  =  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) )
125119breq1d 4064 . . . . . . 7  |-  ( ( a  =  A  /\  m  =  N )  ->  ( m  <  0  <->  N  <  0 ) )
126121breq1d 4064 . . . . . . 7  |-  ( ( a  =  A  /\  m  =  N )  ->  ( a  <  0  <->  A  <  0 ) )
127125, 126anbi12d 473 . . . . . 6  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( m  <  0  /\  a  <  0 )  <->  ( N  <  0  /\  A  <  0 ) ) )
128127ifbid 3597 . . . . 5  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( ( m  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  =  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )
129121breq2d 4066 . . . . . . . . . . . . 13  |-  ( ( a  =  A  /\  m  =  N )  ->  ( 2  ||  a  <->  2 
||  A ) )
130121oveq1d 5977 . . . . . . . . . . . . . . 15  |-  ( ( a  =  A  /\  m  =  N )  ->  ( a  mod  8
)  =  ( A  mod  8 ) )
131130eleq1d 2275 . . . . . . . . . . . . . 14  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( a  mod  8 )  e.  {
1 ,  7 }  <-> 
( A  mod  8
)  e.  { 1 ,  7 } ) )
132131ifbid 3597 . . . . . . . . . . . . 13  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( ( a  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 )  =  if ( ( A  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
133129, 132ifbieq2d 3600 . . . . . . . . . . . 12  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
134121oveq1d 5977 . . . . . . . . . . . . . . 15  |-  ( ( a  =  A  /\  m  =  N )  ->  ( a ^ (
( n  -  1 )  /  2 ) )  =  ( A ^ ( ( n  -  1 )  / 
2 ) ) )
135134oveq1d 5977 . . . . . . . . . . . . . 14  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( a ^
( ( n  - 
1 )  /  2
) )  +  1 )  =  ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 ) )
136135oveq1d 5977 . . . . . . . . . . . . 13  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( ( a ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  =  ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n ) )
137136oveq1d 5977 . . . . . . . . . . . 12  |-  ( ( a  =  A  /\  m  =  N )  ->  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 )  =  ( ( ( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  -  1 ) )
138133, 137ifeq12d 3595 . . . . . . . . . . 11  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) )  =  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) )
139119oveq2d 5978 . . . . . . . . . . 11  |-  ( ( a  =  A  /\  m  =  N )  ->  ( n  pCnt  m
)  =  ( n 
pCnt  N ) )
140138, 139oveq12d 5980 . . . . . . . . . 10  |-  ( ( a  =  A  /\  m  =  N )  ->  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
)  =  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) ) )
141140ifeq1d 3593 . . . . . . . . 9  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( n  e. 
Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 )  =  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) ) ,  1 ) )
142141mpteq2dv 4146 . . . . . . . 8  |-  ( ( a  =  A  /\  m  =  N )  ->  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) ) ^ ( n 
pCnt  N ) ) ,  1 ) ) )
143142, 22eqtr4di 2257 . . . . . . 7  |-  ( ( a  =  A  /\  m  =  N )  ->  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 ) )  =  F )
144143seqeq3d 10632 . . . . . 6  |-  ( ( a  =  A  /\  m  =  N )  ->  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
||  a ,  0 ,  if ( ( a  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( a ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  m
) ) ,  1 ) ) )  =  seq 1 (  x.  ,  F ) )
145119fveq2d 5598 . . . . . 6  |-  ( ( a  =  A  /\  m  =  N )  ->  ( abs `  m
)  =  ( abs `  N ) )
146144, 145fveq12d 5601 . . . . 5  |-  ( ( a  =  A  /\  m  =  N )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) ) ^ ( n 
pCnt  m ) ) ,  1 ) ) ) `
 ( abs `  m
) )  =  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )
147128, 146oveq12d 5980 . . . 4  |-  ( ( a  =  A  /\  m  =  N )  ->  ( if ( ( m  <  0  /\  a  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 ) ) ) `  ( abs `  m ) ) )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) ) )
148120, 124, 147ifbieq12d 3602 . . 3  |-  ( ( a  =  A  /\  m  =  N )  ->  if ( m  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( m  <  0  /\  a  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) ) ^ ( n 
pCnt  m ) ) ,  1 ) ) ) `
 ( abs `  m
) ) ) )  =  if ( N  =  0 ,  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) ) ) )
149 df-lgs 15560 . . 3  |-  /L 
=  ( a  e.  ZZ ,  m  e.  ZZ  |->  if ( m  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( m  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  m )
) ,  1 ) ) ) `  ( abs `  m ) ) ) ) )
150148, 149ovmpoga 6093 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) ) )  e.  ZZ )  ->  ( A  /L N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
 ( abs `  N
) ) ) ) )
151118, 150mpd3an3 1351 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177    =/= wne 2377   ifcif 3575   {cpr 3639   class class class wbr 4054    |-> cmpt 4116   ` cfv 5285  (class class class)co 5962   0cc0 7955   1c1 7956    + caddc 7958    x. cmul 7960    < clt 8137    - cmin 8273   -ucneg 8274    / cdiv 8775   NNcn 9066   2c2 9117   7c7 9122   8c8 9123   NN0cn0 9325   ZZcz 9402    mod cmo 10499    seqcseq 10624   ^cexp 10715   abscabs 11393    || cdvds 12183   Primecprime 12514    pCnt cpc 12692    /Lclgs 15559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846  df-fin 6848  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-dvds 12184  df-gcd 12360  df-prm 12515  df-pc 12693  df-lgs 15560
This theorem is referenced by:  lgscllem  15569  lgsval2lem  15572  lgs0  15575  lgsval4  15582
  Copyright terms: Public domain W3C validator