ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zabsle1 Unicode version

Theorem zabsle1 15591
Description:  { -u 1 ,  0 ,  1 } is the set of all integers with absolute value at most  1. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
zabsle1  |-  ( Z  e.  ZZ  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( abs `  Z
)  <_  1 ) )

Proof of Theorem zabsle1
StepHypRef Expression
1 eltpi 3690 . . 3  |-  ( Z  e.  { -u 1 ,  0 ,  1 }  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
2 fveq2 5599 . . . . 5  |-  ( Z  =  -u 1  ->  ( abs `  Z )  =  ( abs `  -u 1
) )
3 ax-1cn 8053 . . . . . . . 8  |-  1  e.  CC
43absnegi 11573 . . . . . . 7  |-  ( abs `  -u 1 )  =  ( abs `  1
)
5 abs1 11498 . . . . . . 7  |-  ( abs `  1 )  =  1
64, 5eqtri 2228 . . . . . 6  |-  ( abs `  -u 1 )  =  1
7 1le1 8680 . . . . . 6  |-  1  <_  1
86, 7eqbrtri 4080 . . . . 5  |-  ( abs `  -u 1 )  <_ 
1
92, 8eqbrtrdi 4098 . . . 4  |-  ( Z  =  -u 1  ->  ( abs `  Z )  <_ 
1 )
10 fveq2 5599 . . . . 5  |-  ( Z  =  0  ->  ( abs `  Z )  =  ( abs `  0
) )
11 abs0 11484 . . . . . 6  |-  ( abs `  0 )  =  0
12 0le1 8589 . . . . . 6  |-  0  <_  1
1311, 12eqbrtri 4080 . . . . 5  |-  ( abs `  0 )  <_ 
1
1410, 13eqbrtrdi 4098 . . . 4  |-  ( Z  =  0  ->  ( abs `  Z )  <_ 
1 )
15 fveq2 5599 . . . . 5  |-  ( Z  =  1  ->  ( abs `  Z )  =  ( abs `  1
) )
165, 7eqbrtri 4080 . . . . 5  |-  ( abs `  1 )  <_ 
1
1715, 16eqbrtrdi 4098 . . . 4  |-  ( Z  =  1  ->  ( abs `  Z )  <_ 
1 )
189, 14, 173jaoi 1316 . . 3  |-  ( ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1
)  ->  ( abs `  Z )  <_  1
)
191, 18syl 14 . 2  |-  ( Z  e.  { -u 1 ,  0 ,  1 }  ->  ( abs `  Z )  <_  1
)
20 zre 9411 . . . 4  |-  ( Z  e.  ZZ  ->  Z  e.  RR )
21 1red 8122 . . . 4  |-  ( Z  e.  ZZ  ->  1  e.  RR )
2220, 21absled 11601 . . 3  |-  ( Z  e.  ZZ  ->  (
( abs `  Z
)  <_  1  <->  ( -u 1  <_  Z  /\  Z  <_ 
1 ) ) )
23 elz 9409 . . . 4  |-  ( Z  e.  ZZ  <->  ( Z  e.  RR  /\  ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN ) ) )
24 3mix2 1170 . . . . . . . . . 10  |-  ( Z  =  0  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
2524a1d 22 . . . . . . . . 9  |-  ( Z  =  0  ->  (
( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
26 nnle1eq1 9095 . . . . . . . . . . . . . . 15  |-  ( Z  e.  NN  ->  ( Z  <_  1  <->  Z  = 
1 ) )
2726biimpac 298 . . . . . . . . . . . . . 14  |-  ( ( Z  <_  1  /\  Z  e.  NN )  ->  Z  =  1 )
28273mix3d 1177 . . . . . . . . . . . . 13  |-  ( ( Z  <_  1  /\  Z  e.  NN )  ->  ( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) )
2928ex 115 . . . . . . . . . . . 12  |-  ( Z  <_  1  ->  ( Z  e.  NN  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1
) ) )
3029adantl 277 . . . . . . . . . . 11  |-  ( (
-u 1  <_  Z  /\  Z  <_  1 )  ->  ( Z  e.  NN  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
3130adantl 277 . . . . . . . . . 10  |-  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  e.  NN  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
3231com12 30 . . . . . . . . 9  |-  ( Z  e.  NN  ->  (
( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
33 elnnz1 9430 . . . . . . . . . 10  |-  ( -u Z  e.  NN  <->  ( -u Z  e.  ZZ  /\  1  <_  -u Z ) )
34 1red 8122 . . . . . . . . . . . . . . 15  |-  ( Z  e.  RR  ->  1  e.  RR )
35 lenegcon2 8575 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  Z  e.  RR )  ->  ( 1  <_  -u Z  <->  Z  <_  -u 1 ) )
3634, 35mpancom 422 . . . . . . . . . . . . . 14  |-  ( Z  e.  RR  ->  (
1  <_  -u Z  <->  Z  <_  -u
1 ) )
37 neg1rr 9177 . . . . . . . . . . . . . . . . . . . . 21  |-  -u 1  e.  RR
3837a1i 9 . . . . . . . . . . . . . . . . . . . 20  |-  ( Z  e.  RR  ->  -u 1  e.  RR )
39 id 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( Z  e.  RR  ->  Z  e.  RR )
4038, 39letri3d 8223 . . . . . . . . . . . . . . . . . . 19  |-  ( Z  e.  RR  ->  ( -u 1  =  Z  <->  ( -u 1  <_  Z  /\  Z  <_  -u 1 ) ) )
41 3mix1 1169 . . . . . . . . . . . . . . . . . . . 20  |-  ( Z  =  -u 1  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
4241eqcoms 2210 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1  =  Z  -> 
( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) )
4340, 42biimtrrdi 164 . . . . . . . . . . . . . . . . . 18  |-  ( Z  e.  RR  ->  (
( -u 1  <_  Z  /\  Z  <_  -u 1
)  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
4443com12 30 . . . . . . . . . . . . . . . . 17  |-  ( (
-u 1  <_  Z  /\  Z  <_  -u 1
)  ->  ( Z  e.  RR  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
4544ex 115 . . . . . . . . . . . . . . . 16  |-  ( -u
1  <_  Z  ->  ( Z  <_  -u 1  -> 
( Z  e.  RR  ->  ( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4645adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
-u 1  <_  Z  /\  Z  <_  1 )  ->  ( Z  <_  -u 1  ->  ( Z  e.  RR  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4746com13 80 . . . . . . . . . . . . . 14  |-  ( Z  e.  RR  ->  ( Z  <_  -u 1  ->  (
( -u 1  <_  Z  /\  Z  <_  1 )  ->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4836, 47sylbid 150 . . . . . . . . . . . . 13  |-  ( Z  e.  RR  ->  (
1  <_  -u Z  -> 
( ( -u 1  <_  Z  /\  Z  <_ 
1 )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4948com12 30 . . . . . . . . . . . 12  |-  ( 1  <_  -u Z  ->  ( Z  e.  RR  ->  ( ( -u 1  <_  Z  /\  Z  <_  1
)  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
5049impd 254 . . . . . . . . . . 11  |-  ( 1  <_  -u Z  ->  (
( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5150adantl 277 . . . . . . . . . 10  |-  ( (
-u Z  e.  ZZ  /\  1  <_  -u Z )  ->  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5233, 51sylbi 121 . . . . . . . . 9  |-  ( -u Z  e.  NN  ->  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5325, 32, 523jaoi 1316 . . . . . . . 8  |-  ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  ->  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5453imp 124 . . . . . . 7  |-  ( ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  /\  ( Z  e.  RR  /\  ( -u
1  <_  Z  /\  Z  <_  1 ) ) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
55 eltpg 3688 . . . . . . . . 9  |-  ( Z  e.  RR  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5655adantr 276 . . . . . . . 8  |-  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <-> 
( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) ) )
5756adantl 277 . . . . . . 7  |-  ( ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  /\  ( Z  e.  RR  /\  ( -u
1  <_  Z  /\  Z  <_  1 ) ) )  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <-> 
( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) ) )
5854, 57mpbird 167 . . . . . 6  |-  ( ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  /\  ( Z  e.  RR  /\  ( -u
1  <_  Z  /\  Z  <_  1 ) ) )  ->  Z  e.  {
-u 1 ,  0 ,  1 } )
5958exp32 365 . . . . 5  |-  ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  ->  ( Z  e.  RR  ->  ( ( -u 1  <_  Z  /\  Z  <_  1 )  ->  Z  e.  { -u 1 ,  0 ,  1 } ) ) )
6059impcom 125 . . . 4  |-  ( ( Z  e.  RR  /\  ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN ) )  ->  (
( -u 1  <_  Z  /\  Z  <_  1 )  ->  Z  e.  { -u 1 ,  0 ,  1 } ) )
6123, 60sylbi 121 . . 3  |-  ( Z  e.  ZZ  ->  (
( -u 1  <_  Z  /\  Z  <_  1 )  ->  Z  e.  { -u 1 ,  0 ,  1 } ) )
6222, 61sylbid 150 . 2  |-  ( Z  e.  ZZ  ->  (
( abs `  Z
)  <_  1  ->  Z  e.  { -u 1 ,  0 ,  1 } ) )
6319, 62impbid2 143 1  |-  ( Z  e.  ZZ  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( abs `  Z
)  <_  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    = wceq 1373    e. wcel 2178   {ctp 3645   class class class wbr 4059   ` cfv 5290   RRcr 7959   0cc0 7960   1c1 7961    <_ cle 8143   -ucneg 8279   NNcn 9071   ZZcz 9407   abscabs 11423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425
This theorem is referenced by:  lgscl1  15615
  Copyright terms: Public domain W3C validator