ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zabsle1 Unicode version

Theorem zabsle1 13971
Description:  { -u 1 ,  0 ,  1 } is the set of all integers with absolute value at most  1. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
zabsle1  |-  ( Z  e.  ZZ  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( abs `  Z
)  <_  1 ) )

Proof of Theorem zabsle1
StepHypRef Expression
1 eltpi 3636 . . 3  |-  ( Z  e.  { -u 1 ,  0 ,  1 }  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
2 fveq2 5507 . . . . 5  |-  ( Z  =  -u 1  ->  ( abs `  Z )  =  ( abs `  -u 1
) )
3 ax-1cn 7879 . . . . . . . 8  |-  1  e.  CC
43absnegi 11124 . . . . . . 7  |-  ( abs `  -u 1 )  =  ( abs `  1
)
5 abs1 11049 . . . . . . 7  |-  ( abs `  1 )  =  1
64, 5eqtri 2196 . . . . . 6  |-  ( abs `  -u 1 )  =  1
7 1le1 8503 . . . . . 6  |-  1  <_  1
86, 7eqbrtri 4019 . . . . 5  |-  ( abs `  -u 1 )  <_ 
1
92, 8eqbrtrdi 4037 . . . 4  |-  ( Z  =  -u 1  ->  ( abs `  Z )  <_ 
1 )
10 fveq2 5507 . . . . 5  |-  ( Z  =  0  ->  ( abs `  Z )  =  ( abs `  0
) )
11 abs0 11035 . . . . . 6  |-  ( abs `  0 )  =  0
12 0le1 8412 . . . . . 6  |-  0  <_  1
1311, 12eqbrtri 4019 . . . . 5  |-  ( abs `  0 )  <_ 
1
1410, 13eqbrtrdi 4037 . . . 4  |-  ( Z  =  0  ->  ( abs `  Z )  <_ 
1 )
15 fveq2 5507 . . . . 5  |-  ( Z  =  1  ->  ( abs `  Z )  =  ( abs `  1
) )
165, 7eqbrtri 4019 . . . . 5  |-  ( abs `  1 )  <_ 
1
1715, 16eqbrtrdi 4037 . . . 4  |-  ( Z  =  1  ->  ( abs `  Z )  <_ 
1 )
189, 14, 173jaoi 1303 . . 3  |-  ( ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1
)  ->  ( abs `  Z )  <_  1
)
191, 18syl 14 . 2  |-  ( Z  e.  { -u 1 ,  0 ,  1 }  ->  ( abs `  Z )  <_  1
)
20 zre 9230 . . . 4  |-  ( Z  e.  ZZ  ->  Z  e.  RR )
21 1red 7947 . . . 4  |-  ( Z  e.  ZZ  ->  1  e.  RR )
2220, 21absled 11152 . . 3  |-  ( Z  e.  ZZ  ->  (
( abs `  Z
)  <_  1  <->  ( -u 1  <_  Z  /\  Z  <_ 
1 ) ) )
23 elz 9228 . . . 4  |-  ( Z  e.  ZZ  <->  ( Z  e.  RR  /\  ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN ) ) )
24 3mix2 1167 . . . . . . . . . 10  |-  ( Z  =  0  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
2524a1d 22 . . . . . . . . 9  |-  ( Z  =  0  ->  (
( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
26 nnle1eq1 8916 . . . . . . . . . . . . . . 15  |-  ( Z  e.  NN  ->  ( Z  <_  1  <->  Z  = 
1 ) )
2726biimpac 298 . . . . . . . . . . . . . 14  |-  ( ( Z  <_  1  /\  Z  e.  NN )  ->  Z  =  1 )
28273mix3d 1174 . . . . . . . . . . . . 13  |-  ( ( Z  <_  1  /\  Z  e.  NN )  ->  ( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) )
2928ex 115 . . . . . . . . . . . 12  |-  ( Z  <_  1  ->  ( Z  e.  NN  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1
) ) )
3029adantl 277 . . . . . . . . . . 11  |-  ( (
-u 1  <_  Z  /\  Z  <_  1 )  ->  ( Z  e.  NN  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
3130adantl 277 . . . . . . . . . 10  |-  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  e.  NN  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
3231com12 30 . . . . . . . . 9  |-  ( Z  e.  NN  ->  (
( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
33 elnnz1 9249 . . . . . . . . . 10  |-  ( -u Z  e.  NN  <->  ( -u Z  e.  ZZ  /\  1  <_  -u Z ) )
34 1red 7947 . . . . . . . . . . . . . . 15  |-  ( Z  e.  RR  ->  1  e.  RR )
35 lenegcon2 8398 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  Z  e.  RR )  ->  ( 1  <_  -u Z  <->  Z  <_  -u 1 ) )
3634, 35mpancom 422 . . . . . . . . . . . . . 14  |-  ( Z  e.  RR  ->  (
1  <_  -u Z  <->  Z  <_  -u
1 ) )
37 neg1rr 8998 . . . . . . . . . . . . . . . . . . . . 21  |-  -u 1  e.  RR
3837a1i 9 . . . . . . . . . . . . . . . . . . . 20  |-  ( Z  e.  RR  ->  -u 1  e.  RR )
39 id 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( Z  e.  RR  ->  Z  e.  RR )
4038, 39letri3d 8047 . . . . . . . . . . . . . . . . . . 19  |-  ( Z  e.  RR  ->  ( -u 1  =  Z  <->  ( -u 1  <_  Z  /\  Z  <_  -u 1 ) ) )
41 3mix1 1166 . . . . . . . . . . . . . . . . . . . 20  |-  ( Z  =  -u 1  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
4241eqcoms 2178 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1  =  Z  -> 
( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) )
4340, 42syl6bir 164 . . . . . . . . . . . . . . . . . 18  |-  ( Z  e.  RR  ->  (
( -u 1  <_  Z  /\  Z  <_  -u 1
)  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
4443com12 30 . . . . . . . . . . . . . . . . 17  |-  ( (
-u 1  <_  Z  /\  Z  <_  -u 1
)  ->  ( Z  e.  RR  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
4544ex 115 . . . . . . . . . . . . . . . 16  |-  ( -u
1  <_  Z  ->  ( Z  <_  -u 1  -> 
( Z  e.  RR  ->  ( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4645adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
-u 1  <_  Z  /\  Z  <_  1 )  ->  ( Z  <_  -u 1  ->  ( Z  e.  RR  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4746com13 80 . . . . . . . . . . . . . 14  |-  ( Z  e.  RR  ->  ( Z  <_  -u 1  ->  (
( -u 1  <_  Z  /\  Z  <_  1 )  ->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4836, 47sylbid 150 . . . . . . . . . . . . 13  |-  ( Z  e.  RR  ->  (
1  <_  -u Z  -> 
( ( -u 1  <_  Z  /\  Z  <_ 
1 )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4948com12 30 . . . . . . . . . . . 12  |-  ( 1  <_  -u Z  ->  ( Z  e.  RR  ->  ( ( -u 1  <_  Z  /\  Z  <_  1
)  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
5049impd 254 . . . . . . . . . . 11  |-  ( 1  <_  -u Z  ->  (
( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5150adantl 277 . . . . . . . . . 10  |-  ( (
-u Z  e.  ZZ  /\  1  <_  -u Z )  ->  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5233, 51sylbi 121 . . . . . . . . 9  |-  ( -u Z  e.  NN  ->  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5325, 32, 523jaoi 1303 . . . . . . . 8  |-  ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  ->  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5453imp 124 . . . . . . 7  |-  ( ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  /\  ( Z  e.  RR  /\  ( -u
1  <_  Z  /\  Z  <_  1 ) ) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
55 eltpg 3634 . . . . . . . . 9  |-  ( Z  e.  RR  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5655adantr 276 . . . . . . . 8  |-  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <-> 
( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) ) )
5756adantl 277 . . . . . . 7  |-  ( ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  /\  ( Z  e.  RR  /\  ( -u
1  <_  Z  /\  Z  <_  1 ) ) )  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <-> 
( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) ) )
5854, 57mpbird 167 . . . . . 6  |-  ( ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  /\  ( Z  e.  RR  /\  ( -u
1  <_  Z  /\  Z  <_  1 ) ) )  ->  Z  e.  {
-u 1 ,  0 ,  1 } )
5958exp32 365 . . . . 5  |-  ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  ->  ( Z  e.  RR  ->  ( ( -u 1  <_  Z  /\  Z  <_  1 )  ->  Z  e.  { -u 1 ,  0 ,  1 } ) ) )
6059impcom 125 . . . 4  |-  ( ( Z  e.  RR  /\  ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN ) )  ->  (
( -u 1  <_  Z  /\  Z  <_  1 )  ->  Z  e.  { -u 1 ,  0 ,  1 } ) )
6123, 60sylbi 121 . . 3  |-  ( Z  e.  ZZ  ->  (
( -u 1  <_  Z  /\  Z  <_  1 )  ->  Z  e.  { -u 1 ,  0 ,  1 } ) )
6222, 61sylbid 150 . 2  |-  ( Z  e.  ZZ  ->  (
( abs `  Z
)  <_  1  ->  Z  e.  { -u 1 ,  0 ,  1 } ) )
6319, 62impbid2 143 1  |-  ( Z  e.  ZZ  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( abs `  Z
)  <_  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    = wceq 1353    e. wcel 2146   {ctp 3591   class class class wbr 3998   ` cfv 5208   RRcr 7785   0cc0 7786   1c1 7787    <_ cle 7967   -ucneg 8103   NNcn 8892   ZZcz 9226   abscabs 10974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-tp 3597  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-rp 9625  df-seqfrec 10416  df-exp 10490  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976
This theorem is referenced by:  lgscl1  13995
  Copyright terms: Public domain W3C validator