ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zabsle1 Unicode version

Theorem zabsle1 15324
Description:  { -u 1 ,  0 ,  1 } is the set of all integers with absolute value at most  1. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
zabsle1  |-  ( Z  e.  ZZ  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( abs `  Z
)  <_  1 ) )

Proof of Theorem zabsle1
StepHypRef Expression
1 eltpi 3670 . . 3  |-  ( Z  e.  { -u 1 ,  0 ,  1 }  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
2 fveq2 5561 . . . . 5  |-  ( Z  =  -u 1  ->  ( abs `  Z )  =  ( abs `  -u 1
) )
3 ax-1cn 7989 . . . . . . . 8  |-  1  e.  CC
43absnegi 11329 . . . . . . 7  |-  ( abs `  -u 1 )  =  ( abs `  1
)
5 abs1 11254 . . . . . . 7  |-  ( abs `  1 )  =  1
64, 5eqtri 2217 . . . . . 6  |-  ( abs `  -u 1 )  =  1
7 1le1 8616 . . . . . 6  |-  1  <_  1
86, 7eqbrtri 4055 . . . . 5  |-  ( abs `  -u 1 )  <_ 
1
92, 8eqbrtrdi 4073 . . . 4  |-  ( Z  =  -u 1  ->  ( abs `  Z )  <_ 
1 )
10 fveq2 5561 . . . . 5  |-  ( Z  =  0  ->  ( abs `  Z )  =  ( abs `  0
) )
11 abs0 11240 . . . . . 6  |-  ( abs `  0 )  =  0
12 0le1 8525 . . . . . 6  |-  0  <_  1
1311, 12eqbrtri 4055 . . . . 5  |-  ( abs `  0 )  <_ 
1
1410, 13eqbrtrdi 4073 . . . 4  |-  ( Z  =  0  ->  ( abs `  Z )  <_ 
1 )
15 fveq2 5561 . . . . 5  |-  ( Z  =  1  ->  ( abs `  Z )  =  ( abs `  1
) )
165, 7eqbrtri 4055 . . . . 5  |-  ( abs `  1 )  <_ 
1
1715, 16eqbrtrdi 4073 . . . 4  |-  ( Z  =  1  ->  ( abs `  Z )  <_ 
1 )
189, 14, 173jaoi 1314 . . 3  |-  ( ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1
)  ->  ( abs `  Z )  <_  1
)
191, 18syl 14 . 2  |-  ( Z  e.  { -u 1 ,  0 ,  1 }  ->  ( abs `  Z )  <_  1
)
20 zre 9347 . . . 4  |-  ( Z  e.  ZZ  ->  Z  e.  RR )
21 1red 8058 . . . 4  |-  ( Z  e.  ZZ  ->  1  e.  RR )
2220, 21absled 11357 . . 3  |-  ( Z  e.  ZZ  ->  (
( abs `  Z
)  <_  1  <->  ( -u 1  <_  Z  /\  Z  <_ 
1 ) ) )
23 elz 9345 . . . 4  |-  ( Z  e.  ZZ  <->  ( Z  e.  RR  /\  ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN ) ) )
24 3mix2 1169 . . . . . . . . . 10  |-  ( Z  =  0  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
2524a1d 22 . . . . . . . . 9  |-  ( Z  =  0  ->  (
( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
26 nnle1eq1 9031 . . . . . . . . . . . . . . 15  |-  ( Z  e.  NN  ->  ( Z  <_  1  <->  Z  = 
1 ) )
2726biimpac 298 . . . . . . . . . . . . . 14  |-  ( ( Z  <_  1  /\  Z  e.  NN )  ->  Z  =  1 )
28273mix3d 1176 . . . . . . . . . . . . 13  |-  ( ( Z  <_  1  /\  Z  e.  NN )  ->  ( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) )
2928ex 115 . . . . . . . . . . . 12  |-  ( Z  <_  1  ->  ( Z  e.  NN  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1
) ) )
3029adantl 277 . . . . . . . . . . 11  |-  ( (
-u 1  <_  Z  /\  Z  <_  1 )  ->  ( Z  e.  NN  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
3130adantl 277 . . . . . . . . . 10  |-  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  e.  NN  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
3231com12 30 . . . . . . . . 9  |-  ( Z  e.  NN  ->  (
( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
33 elnnz1 9366 . . . . . . . . . 10  |-  ( -u Z  e.  NN  <->  ( -u Z  e.  ZZ  /\  1  <_  -u Z ) )
34 1red 8058 . . . . . . . . . . . . . . 15  |-  ( Z  e.  RR  ->  1  e.  RR )
35 lenegcon2 8511 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  Z  e.  RR )  ->  ( 1  <_  -u Z  <->  Z  <_  -u 1 ) )
3634, 35mpancom 422 . . . . . . . . . . . . . 14  |-  ( Z  e.  RR  ->  (
1  <_  -u Z  <->  Z  <_  -u
1 ) )
37 neg1rr 9113 . . . . . . . . . . . . . . . . . . . . 21  |-  -u 1  e.  RR
3837a1i 9 . . . . . . . . . . . . . . . . . . . 20  |-  ( Z  e.  RR  ->  -u 1  e.  RR )
39 id 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( Z  e.  RR  ->  Z  e.  RR )
4038, 39letri3d 8159 . . . . . . . . . . . . . . . . . . 19  |-  ( Z  e.  RR  ->  ( -u 1  =  Z  <->  ( -u 1  <_  Z  /\  Z  <_  -u 1 ) ) )
41 3mix1 1168 . . . . . . . . . . . . . . . . . . . 20  |-  ( Z  =  -u 1  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
4241eqcoms 2199 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1  =  Z  -> 
( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) )
4340, 42biimtrrdi 164 . . . . . . . . . . . . . . . . . 18  |-  ( Z  e.  RR  ->  (
( -u 1  <_  Z  /\  Z  <_  -u 1
)  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
4443com12 30 . . . . . . . . . . . . . . . . 17  |-  ( (
-u 1  <_  Z  /\  Z  <_  -u 1
)  ->  ( Z  e.  RR  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
4544ex 115 . . . . . . . . . . . . . . . 16  |-  ( -u
1  <_  Z  ->  ( Z  <_  -u 1  -> 
( Z  e.  RR  ->  ( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4645adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
-u 1  <_  Z  /\  Z  <_  1 )  ->  ( Z  <_  -u 1  ->  ( Z  e.  RR  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4746com13 80 . . . . . . . . . . . . . 14  |-  ( Z  e.  RR  ->  ( Z  <_  -u 1  ->  (
( -u 1  <_  Z  /\  Z  <_  1 )  ->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4836, 47sylbid 150 . . . . . . . . . . . . 13  |-  ( Z  e.  RR  ->  (
1  <_  -u Z  -> 
( ( -u 1  <_  Z  /\  Z  <_ 
1 )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
4948com12 30 . . . . . . . . . . . 12  |-  ( 1  <_  -u Z  ->  ( Z  e.  RR  ->  ( ( -u 1  <_  Z  /\  Z  <_  1
)  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) ) )
5049impd 254 . . . . . . . . . . 11  |-  ( 1  <_  -u Z  ->  (
( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5150adantl 277 . . . . . . . . . 10  |-  ( (
-u Z  e.  ZZ  /\  1  <_  -u Z )  ->  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5233, 51sylbi 121 . . . . . . . . 9  |-  ( -u Z  e.  NN  ->  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1
) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5325, 32, 523jaoi 1314 . . . . . . . 8  |-  ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  ->  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5453imp 124 . . . . . . 7  |-  ( ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  /\  ( Z  e.  RR  /\  ( -u
1  <_  Z  /\  Z  <_  1 ) ) )  ->  ( Z  =  -u 1  \/  Z  =  0  \/  Z  =  1 ) )
55 eltpg 3668 . . . . . . . . 9  |-  ( Z  e.  RR  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( Z  = 
-u 1  \/  Z  =  0  \/  Z  =  1 ) ) )
5655adantr 276 . . . . . . . 8  |-  ( ( Z  e.  RR  /\  ( -u 1  <_  Z  /\  Z  <_  1 ) )  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <-> 
( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) ) )
5756adantl 277 . . . . . . 7  |-  ( ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  /\  ( Z  e.  RR  /\  ( -u
1  <_  Z  /\  Z  <_  1 ) ) )  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <-> 
( Z  =  -u
1  \/  Z  =  0  \/  Z  =  1 ) ) )
5854, 57mpbird 167 . . . . . 6  |-  ( ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  /\  ( Z  e.  RR  /\  ( -u
1  <_  Z  /\  Z  <_  1 ) ) )  ->  Z  e.  {
-u 1 ,  0 ,  1 } )
5958exp32 365 . . . . 5  |-  ( ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN )  ->  ( Z  e.  RR  ->  ( ( -u 1  <_  Z  /\  Z  <_  1 )  ->  Z  e.  { -u 1 ,  0 ,  1 } ) ) )
6059impcom 125 . . . 4  |-  ( ( Z  e.  RR  /\  ( Z  =  0  \/  Z  e.  NN  \/  -u Z  e.  NN ) )  ->  (
( -u 1  <_  Z  /\  Z  <_  1 )  ->  Z  e.  { -u 1 ,  0 ,  1 } ) )
6123, 60sylbi 121 . . 3  |-  ( Z  e.  ZZ  ->  (
( -u 1  <_  Z  /\  Z  <_  1 )  ->  Z  e.  { -u 1 ,  0 ,  1 } ) )
6222, 61sylbid 150 . 2  |-  ( Z  e.  ZZ  ->  (
( abs `  Z
)  <_  1  ->  Z  e.  { -u 1 ,  0 ,  1 } ) )
6319, 62impbid2 143 1  |-  ( Z  e.  ZZ  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( abs `  Z
)  <_  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2167   {ctp 3625   class class class wbr 4034   ` cfv 5259   RRcr 7895   0cc0 7896   1c1 7897    <_ cle 8079   -ucneg 8215   NNcn 9007   ZZcz 9343   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  lgscl1  15348
  Copyright terms: Public domain W3C validator