ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mplcoe Unicode version

Definition df-mplcoe 14470
Description: Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is  i, the coefficients are in ring  r, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for  r). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

Assertion
Ref Expression
df-mplcoe  |- mPoly  =  ( i  e.  _V , 
r  e.  _V  |->  [_ ( i mPwSer  r )  /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
Distinct variable group:    a, b, f, i, k, r, w

Detailed syntax breakdown of Definition df-mplcoe
StepHypRef Expression
1 cmpl 14468 . 2  class mPoly
2 vi . . 3  setvar  i
3 vr . . 3  setvar  r
4 cvv 2773 . . 3  class  _V
5 vw . . . 4  setvar  w
62cv 1372 . . . . 5  class  i
73cv 1372 . . . . 5  class  r
8 cmps 14467 . . . . 5  class mPwSer
96, 7, 8co 5951 . . . 4  class  ( i mPwSer 
r )
105cv 1372 . . . . 5  class  w
11 vk . . . . . . . . . . . . 13  setvar  k
1211cv 1372 . . . . . . . . . . . 12  class  k
13 va . . . . . . . . . . . . 13  setvar  a
1413cv 1372 . . . . . . . . . . . 12  class  a
1512, 14cfv 5276 . . . . . . . . . . 11  class  ( a `
 k )
16 vb . . . . . . . . . . . . 13  setvar  b
1716cv 1372 . . . . . . . . . . . 12  class  b
1812, 17cfv 5276 . . . . . . . . . . 11  class  ( b `
 k )
19 clt 8114 . . . . . . . . . . 11  class  <
2015, 18, 19wbr 4047 . . . . . . . . . 10  wff  ( a `
 k )  < 
( b `  k
)
2120, 11, 6wral 2485 . . . . . . . . 9  wff  A. k  e.  i  ( a `  k )  <  (
b `  k )
22 vf . . . . . . . . . . . 12  setvar  f
2322cv 1372 . . . . . . . . . . 11  class  f
2417, 23cfv 5276 . . . . . . . . . 10  class  ( f `
 b )
25 c0g 13132 . . . . . . . . . . 11  class  0g
267, 25cfv 5276 . . . . . . . . . 10  class  ( 0g
`  r )
2724, 26wceq 1373 . . . . . . . . 9  wff  ( f `
 b )  =  ( 0g `  r
)
2821, 27wi 4 . . . . . . . 8  wff  ( A. k  e.  i  (
a `  k )  <  ( b `  k
)  ->  ( f `  b )  =  ( 0g `  r ) )
29 cn0 9302 . . . . . . . . 9  class  NN0
30 cmap 6742 . . . . . . . . 9  class  ^m
3129, 6, 30co 5951 . . . . . . . 8  class  ( NN0 
^m  i )
3228, 16, 31wral 2485 . . . . . . 7  wff  A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) )
3332, 13, 31wrex 2486 . . . . . 6  wff  E. a  e.  ( NN0  ^m  i
) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) )
34 cbs 12876 . . . . . . 7  class  Base
3510, 34cfv 5276 . . . . . 6  class  ( Base `  w )
3633, 22, 35crab 2489 . . . . 5  class  { f  e.  ( Base `  w
)  |  E. a  e.  ( NN0  ^m  i
) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) }
37 cress 12877 . . . . 5  classs
3810, 36, 37co 5951 . . . 4  class  ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )
395, 9, 38csb 3094 . . 3  class  [_ (
i mPwSer  r )  /  w ]_ ( ws  { f  e.  (
Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )
402, 3, 4, 4, 39cmpo 5953 . 2  class  ( i  e.  _V ,  r  e.  _V  |->  [_ (
i mPwSer  r )  /  w ]_ ( ws  { f  e.  (
Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
411, 40wceq 1373 1  wff mPoly  =  ( i  e.  _V , 
r  e.  _V  |->  [_ ( i mPwSer  r )  /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
Colors of variables: wff set class
This definition is referenced by:  reldmmpl  14495  mplvalcoe  14496  fnmpl  14499
  Copyright terms: Public domain W3C validator