ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mplcoe Unicode version

Definition df-mplcoe 14593
Description: Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is  i, the coefficients are in ring  r, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for  r). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

Assertion
Ref Expression
df-mplcoe  |- mPoly  =  ( i  e.  _V , 
r  e.  _V  |->  [_ ( i mPwSer  r )  /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
Distinct variable group:    a, b, f, i, k, r, w

Detailed syntax breakdown of Definition df-mplcoe
StepHypRef Expression
1 cmpl 14591 . 2  class mPoly
2 vi . . 3  setvar  i
3 vr . . 3  setvar  r
4 cvv 2779 . . 3  class  _V
5 vw . . . 4  setvar  w
62cv 1374 . . . . 5  class  i
73cv 1374 . . . . 5  class  r
8 cmps 14590 . . . . 5  class mPwSer
96, 7, 8co 5974 . . . 4  class  ( i mPwSer 
r )
105cv 1374 . . . . 5  class  w
11 vk . . . . . . . . . . . . 13  setvar  k
1211cv 1374 . . . . . . . . . . . 12  class  k
13 va . . . . . . . . . . . . 13  setvar  a
1413cv 1374 . . . . . . . . . . . 12  class  a
1512, 14cfv 5294 . . . . . . . . . . 11  class  ( a `
 k )
16 vb . . . . . . . . . . . . 13  setvar  b
1716cv 1374 . . . . . . . . . . . 12  class  b
1812, 17cfv 5294 . . . . . . . . . . 11  class  ( b `
 k )
19 clt 8149 . . . . . . . . . . 11  class  <
2015, 18, 19wbr 4062 . . . . . . . . . 10  wff  ( a `
 k )  < 
( b `  k
)
2120, 11, 6wral 2488 . . . . . . . . 9  wff  A. k  e.  i  ( a `  k )  <  (
b `  k )
22 vf . . . . . . . . . . . 12  setvar  f
2322cv 1374 . . . . . . . . . . 11  class  f
2417, 23cfv 5294 . . . . . . . . . 10  class  ( f `
 b )
25 c0g 13255 . . . . . . . . . . 11  class  0g
267, 25cfv 5294 . . . . . . . . . 10  class  ( 0g
`  r )
2724, 26wceq 1375 . . . . . . . . 9  wff  ( f `
 b )  =  ( 0g `  r
)
2821, 27wi 4 . . . . . . . 8  wff  ( A. k  e.  i  (
a `  k )  <  ( b `  k
)  ->  ( f `  b )  =  ( 0g `  r ) )
29 cn0 9337 . . . . . . . . 9  class  NN0
30 cmap 6765 . . . . . . . . 9  class  ^m
3129, 6, 30co 5974 . . . . . . . 8  class  ( NN0 
^m  i )
3228, 16, 31wral 2488 . . . . . . 7  wff  A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) )
3332, 13, 31wrex 2489 . . . . . 6  wff  E. a  e.  ( NN0  ^m  i
) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) )
34 cbs 12998 . . . . . . 7  class  Base
3510, 34cfv 5294 . . . . . 6  class  ( Base `  w )
3633, 22, 35crab 2492 . . . . 5  class  { f  e.  ( Base `  w
)  |  E. a  e.  ( NN0  ^m  i
) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) }
37 cress 12999 . . . . 5  classs
3810, 36, 37co 5974 . . . 4  class  ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )
395, 9, 38csb 3104 . . 3  class  [_ (
i mPwSer  r )  /  w ]_ ( ws  { f  e.  (
Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )
402, 3, 4, 4, 39cmpo 5976 . 2  class  ( i  e.  _V ,  r  e.  _V  |->  [_ (
i mPwSer  r )  /  w ]_ ( ws  { f  e.  (
Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
411, 40wceq 1375 1  wff mPoly  =  ( i  e.  _V , 
r  e.  _V  |->  [_ ( i mPwSer  r )  /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
Colors of variables: wff set class
This definition is referenced by:  reldmmpl  14618  mplvalcoe  14619  fnmpl  14622
  Copyright terms: Public domain W3C validator