ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpl Unicode version

Theorem fnmpl 14622
Description: mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.)
Assertion
Ref Expression
fnmpl  |- mPoly  Fn  ( _V  X.  _V )

Proof of Theorem fnmpl
Dummy variables  a  b  f  i  k  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mplcoe 14593 . 2  |- mPoly  =  ( i  e.  _V , 
r  e.  _V  |->  [_ ( i mPwSer  r )  /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
2 fnpsr 14596 . . . 4  |- mPwSer  Fn  ( _V  X.  _V )
3 vex 2782 . . . 4  |-  i  e. 
_V
4 vex 2782 . . . 4  |-  r  e. 
_V
5 fnovex 6007 . . . 4  |-  ( ( mPwSer  Fn  ( _V  X.  _V )  /\  i  e.  _V  /\  r  e.  _V )  ->  ( i mPwSer  r )  e.  _V )
62, 3, 4, 5mp3an 1352 . . 3  |-  ( i mPwSer 
r )  e.  _V
7 vex 2782 . . . 4  |-  w  e. 
_V
8 basfn 13057 . . . . . 6  |-  Base  Fn  _V
9 funfvex 5620 . . . . . . 7  |-  ( ( Fun  Base  /\  w  e.  dom  Base )  ->  ( Base `  w )  e. 
_V )
109funfni 5399 . . . . . 6  |-  ( (
Base  Fn  _V  /\  w  e.  _V )  ->  ( Base `  w )  e. 
_V )
118, 7, 10mp2an 426 . . . . 5  |-  ( Base `  w )  e.  _V
1211rabex 4207 . . . 4  |-  { f  e.  ( Base `  w
)  |  E. a  e.  ( NN0  ^m  i
) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) }  e.  _V
13 ressex 13064 . . . 4  |-  ( ( w  e.  _V  /\  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) }  e.  _V )  ->  ( ws  { f  e.  (
Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )  e.  _V )
147, 12, 13mp2an 426 . . 3  |-  ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )  e.  _V
156, 14csbexa 4192 . 2  |-  [_ (
i mPwSer  r )  /  w ]_ ( ws  { f  e.  (
Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )  e.  _V
161, 15fnmpoi 6319 1  |- mPoly  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1375    e. wcel 2180   A.wral 2488   E.wrex 2489   {crab 2492   _Vcvv 2779   [_csb 3104   class class class wbr 4062    X. cxp 4694    Fn wfn 5289   ` cfv 5294  (class class class)co 5974    ^m cmap 6765    < clt 8149   NN0cn0 9337   Basecbs 12998   ↾s cress 12999   0gc0g 13255   mPwSer cmps 14590   mPoly cmpl 14591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-i2m1 8072
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-tset 13095  df-rest 13240  df-topn 13241  df-topgen 13259  df-pt 13260  df-psr 14592  df-mplcoe 14593
This theorem is referenced by:  mplrcl  14623  mplbasss  14625  mplplusgg  14632  mpladd  14633
  Copyright terms: Public domain W3C validator