ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmpsr Unicode version

Theorem reldmpsr 14219
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr  |-  Rel  dom mPwSer

Proof of Theorem reldmpsr
Dummy variables  h  i  r  y  b  d  f  g  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14218 . 2  |- mPwSer  =  ( i  e.  _V , 
r  e.  _V  |->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
21reldmmpo 6034 1  |-  Rel  dom mPwSer
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   {crab 2479   _Vcvv 2763   [_csb 3084    u. cun 3155   {csn 3622   {ctp 3624   <.cop 3625   class class class wbr 4033    |-> cmpt 4094    X. cxp 4661   `'ccnv 4662   dom cdm 4663    |` cres 4665   "cima 4666   Rel wrel 4668   ` cfv 5258  (class class class)co 5922    e. cmpo 5924    oFcof 6133    oRcofr 6134    ^m cmap 6707   Fincfn 6799    <_ cle 8062    - cmin 8197   NNcn 8990   NN0cn0 9249   ndxcnx 12675   Basecbs 12678   +g cplusg 12755   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759  TopSetcts 12761   TopOpenctopn 12911   Xt_cpt 12926    gsumg cgsu 12928   mPwSer cmps 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-dm 4673  df-oprab 5926  df-mpo 5927  df-psr 14218
This theorem is referenced by:  psrelbas  14228  psradd  14231  psraddcl  14232
  Copyright terms: Public domain W3C validator