ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmpsr Unicode version

Theorem reldmpsr 14502
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr  |-  Rel  dom mPwSer

Proof of Theorem reldmpsr
Dummy variables  h  i  r  y  b  d  f  g  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14500 . 2  |- mPwSer  =  ( i  e.  _V , 
r  e.  _V  |->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
21reldmmpo 6070 1  |-  Rel  dom mPwSer
Colors of variables: wff set class
Syntax hints:    e. wcel 2177   {crab 2489   _Vcvv 2773   [_csb 3097    u. cun 3168   {csn 3638   {ctp 3640   <.cop 3641   class class class wbr 4051    |-> cmpt 4113    X. cxp 4681   `'ccnv 4682   dom cdm 4683    |` cres 4685   "cima 4686   Rel wrel 4688   ` cfv 5280  (class class class)co 5957    e. cmpo 5959    oFcof 6169    oRcofr 6170    ^m cmap 6748   Fincfn 6840    <_ cle 8128    - cmin 8263   NNcn 9056   NN0cn0 9315   ndxcnx 12904   Basecbs 12907   +g cplusg 12984   .rcmulr 12985  Scalarcsca 12987   .scvsca 12988  TopSetcts 12990   TopOpenctopn 13147   Xt_cpt 13162    gsumg cgsu 13164   mPwSer cmps 14498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-dm 4693  df-oprab 5961  df-mpo 5962  df-psr 14500
This theorem is referenced by:  psrelbas  14512  psradd  14516  psraddcl  14517
  Copyright terms: Public domain W3C validator