ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmpsr Unicode version

Theorem reldmpsr 14623
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr  |-  Rel  dom mPwSer

Proof of Theorem reldmpsr
Dummy variables  h  i  r  y  b  d  f  g  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14621 . 2  |- mPwSer  =  ( i  e.  _V , 
r  e.  _V  |->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
21reldmmpo 6115 1  |-  Rel  dom mPwSer
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   {crab 2512   _Vcvv 2799   [_csb 3124    u. cun 3195   {csn 3666   {ctp 3668   <.cop 3669   class class class wbr 4082    |-> cmpt 4144    X. cxp 4716   `'ccnv 4717   dom cdm 4718    |` cres 4720   "cima 4721   Rel wrel 4723   ` cfv 5317  (class class class)co 6000    e. cmpo 6002    oFcof 6214    oRcofr 6215    ^m cmap 6793   Fincfn 6885    <_ cle 8178    - cmin 8313   NNcn 9106   NN0cn0 9365   ndxcnx 13024   Basecbs 13027   +g cplusg 13105   .rcmulr 13106  Scalarcsca 13108   .scvsca 13109  TopSetcts 13111   TopOpenctopn 13268   Xt_cpt 13283    gsumg cgsu 13285   mPwSer cmps 14619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-dm 4728  df-oprab 6004  df-mpo 6005  df-psr 14621
This theorem is referenced by:  psrelbas  14633  psradd  14637  psraddcl  14638
  Copyright terms: Public domain W3C validator