ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplvalcoe Unicode version

Theorem mplvalcoe 14662
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
Hypotheses
Ref Expression
mplval.p  |-  P  =  ( I mPoly  R )
mplval.s  |-  S  =  ( I mPwSer  R )
mplval.b  |-  B  =  ( Base `  S
)
mplval.z  |-  .0.  =  ( 0g `  R )
mplvalcoe.u  |-  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  .0.  ) }
Assertion
Ref Expression
mplvalcoe  |-  ( ( I  e.  V  /\  R  e.  W )  ->  P  =  ( Ss  U ) )
Distinct variable groups:    B, f    f,
a, b, k, I    R, f, a, b, k    .0. , f
Allowed substitution hints:    B( k, a, b)    P( f, k, a, b)    S( f, k, a, b)    U( f, k, a, b)    V( f, k, a, b)    W( f, k, a, b)    .0. ( k, a, b)

Proof of Theorem mplvalcoe
Dummy variables  i  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2  |-  P  =  ( I mPoly  R )
2 elex 2811 . . . 4  |-  ( I  e.  V  ->  I  e.  _V )
32adantr 276 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  I  e.  _V )
4 elex 2811 . . . 4  |-  ( R  e.  W  ->  R  e.  _V )
54adantl 277 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  R  e.  _V )
6 mplval.s . . . . 5  |-  S  =  ( I mPwSer  R )
7 fnpsr 14639 . . . . . . 7  |- mPwSer  Fn  ( _V  X.  _V )
87a1i 9 . . . . . 6  |-  ( ( I  e.  V  /\  R  e.  W )  -> mPwSer 
Fn  ( _V  X.  _V ) )
9 fnovex 6040 . . . . . 6  |-  ( ( mPwSer  Fn  ( _V  X.  _V )  /\  I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  e.  _V )
108, 3, 5, 9syl3anc 1271 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( I mPwSer  R )  e.  _V )
116, 10eqeltrid 2316 . . . 4  |-  ( ( I  e.  V  /\  R  e.  W )  ->  S  e.  _V )
12 mplvalcoe.u . . . . 5  |-  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  .0.  ) }
13 mplval.b . . . . . 6  |-  B  =  ( Base `  S
)
14 basfn 13099 . . . . . . 7  |-  Base  Fn  _V
15 funfvex 5646 . . . . . . . 8  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
1615funfni 5423 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
1714, 11, 16sylancr 414 . . . . . 6  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( Base `  S
)  e.  _V )
1813, 17eqeltrid 2316 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  W )  ->  B  e.  _V )
1912, 18rabexd 4229 . . . 4  |-  ( ( I  e.  V  /\  R  e.  W )  ->  U  e.  _V )
20 ressex 13106 . . . 4  |-  ( ( S  e.  _V  /\  U  e.  _V )  ->  ( Ss  U )  e.  _V )
2111, 19, 20syl2anc 411 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( Ss  U )  e.  _V )
22 vex 2802 . . . . . . 7  |-  i  e. 
_V
23 vex 2802 . . . . . . 7  |-  r  e. 
_V
24 fnovex 6040 . . . . . . 7  |-  ( ( mPwSer  Fn  ( _V  X.  _V )  /\  i  e.  _V  /\  r  e.  _V )  ->  ( i mPwSer  r )  e.  _V )
257, 22, 23, 24mp3an 1371 . . . . . 6  |-  ( i mPwSer 
r )  e.  _V
2625a1i 9 . . . . 5  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPwSer  r )  e.  _V )
27 id 19 . . . . . . . 8  |-  ( s  =  ( i mPwSer  r
)  ->  s  =  ( i mPwSer  r )
)
28 oveq12 6016 . . . . . . . 8  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPwSer  r )  =  ( I mPwSer  R
) )
2927, 28sylan9eqr 2284 . . . . . . 7  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  s  =  ( I mPwSer  R ) )
3029, 6eqtr4di 2280 . . . . . 6  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  s  =  S )
3130fveq2d 5633 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( Base `  s )  =  (
Base `  S )
)
3231, 13eqtr4di 2280 . . . . . . . 8  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( Base `  s )  =  B )
33 simpll 527 . . . . . . . . . 10  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  i  =  I )
3433oveq2d 6023 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( NN0  ^m  i )  =  ( NN0  ^m  I ) )
3533raleqdv 2734 . . . . . . . . . . 11  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( A. k  e.  i  (
a `  k )  <  ( b `  k
)  <->  A. k  e.  I 
( a `  k
)  <  ( b `  k ) ) )
36 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  r  =  R )
3736fveq2d 5633 . . . . . . . . . . . . 13  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( 0g `  r )  =  ( 0g `  R ) )
38 mplval.z . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  R )
3937, 38eqtr4di 2280 . . . . . . . . . . . 12  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( 0g `  r )  =  .0.  )
4039eqeq2d 2241 . . . . . . . . . . 11  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( (
f `  b )  =  ( 0g `  r )  <->  ( f `  b )  =  .0.  ) )
4135, 40imbi12d 234 . . . . . . . . . 10  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( ( A. k  e.  i 
( a `  k
)  <  ( b `  k )  ->  (
f `  b )  =  ( 0g `  r ) )  <->  ( A. k  e.  I  (
a `  k )  <  ( b `  k
)  ->  ( f `  b )  =  .0.  ) ) )
4234, 41raleqbidv 2744 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  (
a `  k )  <  ( b `  k
)  ->  ( f `  b )  =  ( 0g `  r ) )  <->  A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  .0.  )
) )
4334, 42rexeqbidv 2745 . . . . . . . 8  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) )  <->  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  (
a `  k )  <  ( b `  k
)  ->  ( f `  b )  =  .0.  ) ) )
4432, 43rabeqbidv 2794 . . . . . . 7  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  { f  e.  ( Base `  s
)  |  E. a  e.  ( NN0  ^m  i
) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) }  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I
) ( A. k  e.  I  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  .0.  ) } )
4544, 12eqtr4di 2280 . . . . . 6  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  { f  e.  ( Base `  s
)  |  E. a  e.  ( NN0  ^m  i
) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) }  =  U )
4630, 45oveq12d 6025 . . . . 5  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( ss  {
f  e.  ( Base `  s )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )  =  ( Ss  U ) )
4726, 46csbied 3171 . . . 4  |-  ( ( i  =  I  /\  r  =  R )  ->  [_ ( i mPwSer  r
)  /  s ]_ ( ss  { f  e.  (
Base `  s )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )  =  ( Ss  U ) )
48 df-mplcoe 14636 . . . 4  |- mPoly  =  ( i  e.  _V , 
r  e.  _V  |->  [_ ( i mPwSer  r )  /  s ]_ (
ss 
{ f  e.  (
Base `  s )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
4947, 48ovmpoga 6140 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V  /\  ( Ss  U )  e.  _V )  ->  ( I mPoly  R
)  =  ( Ss  U ) )
503, 5, 21, 49syl3anc 1271 . 2  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( I mPoly  R )  =  ( Ss  U ) )
511, 50eqtrid 2274 1  |-  ( ( I  e.  V  /\  R  e.  W )  ->  P  =  ( Ss  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   _Vcvv 2799   [_csb 3124   class class class wbr 4083    X. cxp 4717    Fn wfn 5313   ` cfv 5318  (class class class)co 6007    ^m cmap 6803    < clt 8189   NN0cn0 9377   Basecbs 13040   ↾s cress 13041   0gc0g 13297   mPwSer cmps 14633   mPoly cmpl 14634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-i2m1 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-tset 13137  df-rest 13282  df-topn 13283  df-topgen 13301  df-pt 13302  df-psr 14635  df-mplcoe 14636
This theorem is referenced by:  mplbascoe  14663  mplval2g  14667
  Copyright terms: Public domain W3C validator