ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplvalcoe Unicode version

Theorem mplvalcoe 14496
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
Hypotheses
Ref Expression
mplval.p  |-  P  =  ( I mPoly  R )
mplval.s  |-  S  =  ( I mPwSer  R )
mplval.b  |-  B  =  ( Base `  S
)
mplval.z  |-  .0.  =  ( 0g `  R )
mplvalcoe.u  |-  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  .0.  ) }
Assertion
Ref Expression
mplvalcoe  |-  ( ( I  e.  V  /\  R  e.  W )  ->  P  =  ( Ss  U ) )
Distinct variable groups:    B, f    f,
a, b, k, I    R, f, a, b, k    .0. , f
Allowed substitution hints:    B( k, a, b)    P( f, k, a, b)    S( f, k, a, b)    U( f, k, a, b)    V( f, k, a, b)    W( f, k, a, b)    .0. ( k, a, b)

Proof of Theorem mplvalcoe
Dummy variables  i  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2  |-  P  =  ( I mPoly  R )
2 elex 2784 . . . 4  |-  ( I  e.  V  ->  I  e.  _V )
32adantr 276 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  I  e.  _V )
4 elex 2784 . . . 4  |-  ( R  e.  W  ->  R  e.  _V )
54adantl 277 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  R  e.  _V )
6 mplval.s . . . . 5  |-  S  =  ( I mPwSer  R )
7 fnpsr 14473 . . . . . . 7  |- mPwSer  Fn  ( _V  X.  _V )
87a1i 9 . . . . . 6  |-  ( ( I  e.  V  /\  R  e.  W )  -> mPwSer 
Fn  ( _V  X.  _V ) )
9 fnovex 5984 . . . . . 6  |-  ( ( mPwSer  Fn  ( _V  X.  _V )  /\  I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  e.  _V )
108, 3, 5, 9syl3anc 1250 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( I mPwSer  R )  e.  _V )
116, 10eqeltrid 2293 . . . 4  |-  ( ( I  e.  V  /\  R  e.  W )  ->  S  e.  _V )
12 mplvalcoe.u . . . . 5  |-  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  .0.  ) }
13 mplval.b . . . . . 6  |-  B  =  ( Base `  S
)
14 basfn 12934 . . . . . . 7  |-  Base  Fn  _V
15 funfvex 5600 . . . . . . . 8  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
1615funfni 5381 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
1714, 11, 16sylancr 414 . . . . . 6  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( Base `  S
)  e.  _V )
1813, 17eqeltrid 2293 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  W )  ->  B  e.  _V )
1912, 18rabexd 4193 . . . 4  |-  ( ( I  e.  V  /\  R  e.  W )  ->  U  e.  _V )
20 ressex 12941 . . . 4  |-  ( ( S  e.  _V  /\  U  e.  _V )  ->  ( Ss  U )  e.  _V )
2111, 19, 20syl2anc 411 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( Ss  U )  e.  _V )
22 vex 2776 . . . . . . 7  |-  i  e. 
_V
23 vex 2776 . . . . . . 7  |-  r  e. 
_V
24 fnovex 5984 . . . . . . 7  |-  ( ( mPwSer  Fn  ( _V  X.  _V )  /\  i  e.  _V  /\  r  e.  _V )  ->  ( i mPwSer  r )  e.  _V )
257, 22, 23, 24mp3an 1350 . . . . . 6  |-  ( i mPwSer 
r )  e.  _V
2625a1i 9 . . . . 5  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPwSer  r )  e.  _V )
27 id 19 . . . . . . . 8  |-  ( s  =  ( i mPwSer  r
)  ->  s  =  ( i mPwSer  r )
)
28 oveq12 5960 . . . . . . . 8  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPwSer  r )  =  ( I mPwSer  R
) )
2927, 28sylan9eqr 2261 . . . . . . 7  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  s  =  ( I mPwSer  R ) )
3029, 6eqtr4di 2257 . . . . . 6  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  s  =  S )
3130fveq2d 5587 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( Base `  s )  =  (
Base `  S )
)
3231, 13eqtr4di 2257 . . . . . . . 8  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( Base `  s )  =  B )
33 simpll 527 . . . . . . . . . 10  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  i  =  I )
3433oveq2d 5967 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( NN0  ^m  i )  =  ( NN0  ^m  I ) )
3533raleqdv 2709 . . . . . . . . . . 11  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( A. k  e.  i  (
a `  k )  <  ( b `  k
)  <->  A. k  e.  I 
( a `  k
)  <  ( b `  k ) ) )
36 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  r  =  R )
3736fveq2d 5587 . . . . . . . . . . . . 13  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( 0g `  r )  =  ( 0g `  R ) )
38 mplval.z . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  R )
3937, 38eqtr4di 2257 . . . . . . . . . . . 12  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( 0g `  r )  =  .0.  )
4039eqeq2d 2218 . . . . . . . . . . 11  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( (
f `  b )  =  ( 0g `  r )  <->  ( f `  b )  =  .0.  ) )
4135, 40imbi12d 234 . . . . . . . . . 10  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( ( A. k  e.  i 
( a `  k
)  <  ( b `  k )  ->  (
f `  b )  =  ( 0g `  r ) )  <->  ( A. k  e.  I  (
a `  k )  <  ( b `  k
)  ->  ( f `  b )  =  .0.  ) ) )
4234, 41raleqbidv 2719 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  (
a `  k )  <  ( b `  k
)  ->  ( f `  b )  =  ( 0g `  r ) )  <->  A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  .0.  )
) )
4334, 42rexeqbidv 2720 . . . . . . . 8  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) )  <->  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  (
a `  k )  <  ( b `  k
)  ->  ( f `  b )  =  .0.  ) ) )
4432, 43rabeqbidv 2768 . . . . . . 7  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  { f  e.  ( Base `  s
)  |  E. a  e.  ( NN0  ^m  i
) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) }  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I
) ( A. k  e.  I  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  .0.  ) } )
4544, 12eqtr4di 2257 . . . . . 6  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  { f  e.  ( Base `  s
)  |  E. a  e.  ( NN0  ^m  i
) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) }  =  U )
4630, 45oveq12d 5969 . . . . 5  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( ss  {
f  e.  ( Base `  s )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )  =  ( Ss  U ) )
4726, 46csbied 3141 . . . 4  |-  ( ( i  =  I  /\  r  =  R )  ->  [_ ( i mPwSer  r
)  /  s ]_ ( ss  { f  e.  (
Base `  s )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } )  =  ( Ss  U ) )
48 df-mplcoe 14470 . . . 4  |- mPoly  =  ( i  e.  _V , 
r  e.  _V  |->  [_ ( i mPwSer  r )  /  s ]_ (
ss 
{ f  e.  (
Base `  s )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i ) ( A. k  e.  i  ( a `  k )  <  (
b `  k )  ->  ( f `  b
)  =  ( 0g
`  r ) ) } ) )
4947, 48ovmpoga 6082 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V  /\  ( Ss  U )  e.  _V )  ->  ( I mPoly  R
)  =  ( Ss  U ) )
503, 5, 21, 49syl3anc 1250 . 2  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( I mPoly  R )  =  ( Ss  U ) )
511, 50eqtrid 2251 1  |-  ( ( I  e.  V  /\  R  e.  W )  ->  P  =  ( Ss  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   {crab 2489   _Vcvv 2773   [_csb 3094   class class class wbr 4047    X. cxp 4677    Fn wfn 5271   ` cfv 5276  (class class class)co 5951    ^m cmap 6742    < clt 8114   NN0cn0 9302   Basecbs 12876   ↾s cress 12877   0gc0g 13132   mPwSer cmps 14467   mPoly cmpl 14468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-i2m1 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-map 6744  df-ixp 6793  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-tset 12972  df-rest 13117  df-topn 13118  df-topgen 13136  df-pt 13137  df-psr 14469  df-mplcoe 14470
This theorem is referenced by:  mplbascoe  14497  mplval2g  14501
  Copyright terms: Public domain W3C validator