| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplvalcoe | Unicode version | ||
| Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| mplval.p |
|
| mplval.s |
|
| mplval.b |
|
| mplval.z |
|
| mplvalcoe.u |
|
| Ref | Expression |
|---|---|
| mplvalcoe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval.p |
. 2
| |
| 2 | elex 2811 |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | elex 2811 |
. . . 4
| |
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | mplval.s |
. . . . 5
| |
| 7 | fnpsr 14639 |
. . . . . . 7
| |
| 8 | 7 | a1i 9 |
. . . . . 6
|
| 9 | fnovex 6040 |
. . . . . 6
| |
| 10 | 8, 3, 5, 9 | syl3anc 1271 |
. . . . 5
|
| 11 | 6, 10 | eqeltrid 2316 |
. . . 4
|
| 12 | mplvalcoe.u |
. . . . 5
| |
| 13 | mplval.b |
. . . . . 6
| |
| 14 | basfn 13099 |
. . . . . . 7
| |
| 15 | funfvex 5646 |
. . . . . . . 8
| |
| 16 | 15 | funfni 5423 |
. . . . . . 7
|
| 17 | 14, 11, 16 | sylancr 414 |
. . . . . 6
|
| 18 | 13, 17 | eqeltrid 2316 |
. . . . 5
|
| 19 | 12, 18 | rabexd 4229 |
. . . 4
|
| 20 | ressex 13106 |
. . . 4
| |
| 21 | 11, 19, 20 | syl2anc 411 |
. . 3
|
| 22 | vex 2802 |
. . . . . . 7
| |
| 23 | vex 2802 |
. . . . . . 7
| |
| 24 | fnovex 6040 |
. . . . . . 7
| |
| 25 | 7, 22, 23, 24 | mp3an 1371 |
. . . . . 6
|
| 26 | 25 | a1i 9 |
. . . . 5
|
| 27 | id 19 |
. . . . . . . 8
| |
| 28 | oveq12 6016 |
. . . . . . . 8
| |
| 29 | 27, 28 | sylan9eqr 2284 |
. . . . . . 7
|
| 30 | 29, 6 | eqtr4di 2280 |
. . . . . 6
|
| 31 | 30 | fveq2d 5633 |
. . . . . . . . 9
|
| 32 | 31, 13 | eqtr4di 2280 |
. . . . . . . 8
|
| 33 | simpll 527 |
. . . . . . . . . 10
| |
| 34 | 33 | oveq2d 6023 |
. . . . . . . . 9
|
| 35 | 33 | raleqdv 2734 |
. . . . . . . . . . 11
|
| 36 | simplr 528 |
. . . . . . . . . . . . . 14
| |
| 37 | 36 | fveq2d 5633 |
. . . . . . . . . . . . 13
|
| 38 | mplval.z |
. . . . . . . . . . . . 13
| |
| 39 | 37, 38 | eqtr4di 2280 |
. . . . . . . . . . . 12
|
| 40 | 39 | eqeq2d 2241 |
. . . . . . . . . . 11
|
| 41 | 35, 40 | imbi12d 234 |
. . . . . . . . . 10
|
| 42 | 34, 41 | raleqbidv 2744 |
. . . . . . . . 9
|
| 43 | 34, 42 | rexeqbidv 2745 |
. . . . . . . 8
|
| 44 | 32, 43 | rabeqbidv 2794 |
. . . . . . 7
|
| 45 | 44, 12 | eqtr4di 2280 |
. . . . . 6
|
| 46 | 30, 45 | oveq12d 6025 |
. . . . 5
|
| 47 | 26, 46 | csbied 3171 |
. . . 4
|
| 48 | df-mplcoe 14636 |
. . . 4
| |
| 49 | 47, 48 | ovmpoga 6140 |
. . 3
|
| 50 | 3, 5, 21, 49 | syl3anc 1271 |
. 2
|
| 51 | 1, 50 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-i2m1 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-map 6805 df-ixp 6854 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-tset 13137 df-rest 13282 df-topn 13283 df-topgen 13301 df-pt 13302 df-psr 14635 df-mplcoe 14636 |
| This theorem is referenced by: mplbascoe 14663 mplval2g 14667 |
| Copyright terms: Public domain | W3C validator |