Detailed syntax breakdown of Definition df-mplcoe
| Step | Hyp | Ref
| Expression |
| 1 | | cmpl 14296 |
. 2
class
mPoly |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 2763 |
. . 3
class
V |
| 5 | | vw |
. . . 4
setvar 𝑤 |
| 6 | 2 | cv 1363 |
. . . . 5
class 𝑖 |
| 7 | 3 | cv 1363 |
. . . . 5
class 𝑟 |
| 8 | | cmps 14295 |
. . . . 5
class
mPwSer |
| 9 | 6, 7, 8 | co 5925 |
. . . 4
class (𝑖 mPwSer 𝑟) |
| 10 | 5 | cv 1363 |
. . . . 5
class 𝑤 |
| 11 | | vk |
. . . . . . . . . . . . 13
setvar 𝑘 |
| 12 | 11 | cv 1363 |
. . . . . . . . . . . 12
class 𝑘 |
| 13 | | va |
. . . . . . . . . . . . 13
setvar 𝑎 |
| 14 | 13 | cv 1363 |
. . . . . . . . . . . 12
class 𝑎 |
| 15 | 12, 14 | cfv 5259 |
. . . . . . . . . . 11
class (𝑎‘𝑘) |
| 16 | | vb |
. . . . . . . . . . . . 13
setvar 𝑏 |
| 17 | 16 | cv 1363 |
. . . . . . . . . . . 12
class 𝑏 |
| 18 | 12, 17 | cfv 5259 |
. . . . . . . . . . 11
class (𝑏‘𝑘) |
| 19 | | clt 8080 |
. . . . . . . . . . 11
class
< |
| 20 | 15, 18, 19 | wbr 4034 |
. . . . . . . . . 10
wff (𝑎‘𝑘) < (𝑏‘𝑘) |
| 21 | 20, 11, 6 | wral 2475 |
. . . . . . . . 9
wff
∀𝑘 ∈
𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) |
| 22 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
| 23 | 22 | cv 1363 |
. . . . . . . . . . 11
class 𝑓 |
| 24 | 17, 23 | cfv 5259 |
. . . . . . . . . 10
class (𝑓‘𝑏) |
| 25 | | c0g 12960 |
. . . . . . . . . . 11
class
0g |
| 26 | 7, 25 | cfv 5259 |
. . . . . . . . . 10
class
(0g‘𝑟) |
| 27 | 24, 26 | wceq 1364 |
. . . . . . . . 9
wff (𝑓‘𝑏) = (0g‘𝑟) |
| 28 | 21, 27 | wi 4 |
. . . . . . . 8
wff
(∀𝑘 ∈
𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟)) |
| 29 | | cn0 9268 |
. . . . . . . . 9
class
ℕ0 |
| 30 | | cmap 6716 |
. . . . . . . . 9
class
↑𝑚 |
| 31 | 29, 6, 30 | co 5925 |
. . . . . . . 8
class
(ℕ0 ↑𝑚 𝑖) |
| 32 | 28, 16, 31 | wral 2475 |
. . . . . . 7
wff
∀𝑏 ∈
(ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟)) |
| 33 | 32, 13, 31 | wrex 2476 |
. . . . . 6
wff
∃𝑎 ∈
(ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟)) |
| 34 | | cbs 12705 |
. . . . . . 7
class
Base |
| 35 | 10, 34 | cfv 5259 |
. . . . . 6
class
(Base‘𝑤) |
| 36 | 33, 22, 35 | crab 2479 |
. . . . 5
class {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))} |
| 37 | | cress 12706 |
. . . . 5
class
↾s |
| 38 | 10, 36, 37 | co 5925 |
. . . 4
class (𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))}) |
| 39 | 5, 9, 38 | csb 3084 |
. . 3
class
⦋(𝑖
mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))}) |
| 40 | 2, 3, 4, 4, 39 | cmpo 5927 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))})) |
| 41 | 1, 40 | wceq 1364 |
1
wff mPoly =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋(𝑖 mPwSer
𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))})) |