ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mplcoe GIF version

Definition df-mplcoe 14636
Description: Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is 𝑖, the coefficients are in ring 𝑟, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for 𝑟). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

Assertion
Ref Expression
df-mplcoe mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
Distinct variable group:   𝑎,𝑏,𝑓,𝑖,𝑘,𝑟,𝑤

Detailed syntax breakdown of Definition df-mplcoe
StepHypRef Expression
1 cmpl 14634 . 2 class mPoly
2 vi . . 3 setvar 𝑖
3 vr . . 3 setvar 𝑟
4 cvv 2799 . . 3 class V
5 vw . . . 4 setvar 𝑤
62cv 1394 . . . . 5 class 𝑖
73cv 1394 . . . . 5 class 𝑟
8 cmps 14633 . . . . 5 class mPwSer
96, 7, 8co 6007 . . . 4 class (𝑖 mPwSer 𝑟)
105cv 1394 . . . . 5 class 𝑤
11 vk . . . . . . . . . . . . 13 setvar 𝑘
1211cv 1394 . . . . . . . . . . . 12 class 𝑘
13 va . . . . . . . . . . . . 13 setvar 𝑎
1413cv 1394 . . . . . . . . . . . 12 class 𝑎
1512, 14cfv 5318 . . . . . . . . . . 11 class (𝑎𝑘)
16 vb . . . . . . . . . . . . 13 setvar 𝑏
1716cv 1394 . . . . . . . . . . . 12 class 𝑏
1812, 17cfv 5318 . . . . . . . . . . 11 class (𝑏𝑘)
19 clt 8189 . . . . . . . . . . 11 class <
2015, 18, 19wbr 4083 . . . . . . . . . 10 wff (𝑎𝑘) < (𝑏𝑘)
2120, 11, 6wral 2508 . . . . . . . . 9 wff 𝑘𝑖 (𝑎𝑘) < (𝑏𝑘)
22 vf . . . . . . . . . . . 12 setvar 𝑓
2322cv 1394 . . . . . . . . . . 11 class 𝑓
2417, 23cfv 5318 . . . . . . . . . 10 class (𝑓𝑏)
25 c0g 13297 . . . . . . . . . . 11 class 0g
267, 25cfv 5318 . . . . . . . . . 10 class (0g𝑟)
2724, 26wceq 1395 . . . . . . . . 9 wff (𝑓𝑏) = (0g𝑟)
2821, 27wi 4 . . . . . . . 8 wff (∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))
29 cn0 9377 . . . . . . . . 9 class 0
30 cmap 6803 . . . . . . . . 9 class 𝑚
3129, 6, 30co 6007 . . . . . . . 8 class (ℕ0𝑚 𝑖)
3228, 16, 31wral 2508 . . . . . . 7 wff 𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))
3332, 13, 31wrex 2509 . . . . . 6 wff 𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))
34 cbs 13040 . . . . . . 7 class Base
3510, 34cfv 5318 . . . . . 6 class (Base‘𝑤)
3633, 22, 35crab 2512 . . . . 5 class {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}
37 cress 13041 . . . . 5 class s
3810, 36, 37co 6007 . . . 4 class (𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))})
395, 9, 38csb 3124 . . 3 class (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))})
402, 3, 4, 4, 39cmpo 6009 . 2 class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
411, 40wceq 1395 1 wff mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
Colors of variables: wff set class
This definition is referenced by:  reldmmpl  14661  mplvalcoe  14662  fnmpl  14665
  Copyright terms: Public domain W3C validator