ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mplcoe GIF version

Definition df-mplcoe 14298
Description: Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is 𝑖, the coefficients are in ring 𝑟, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for 𝑟). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

Assertion
Ref Expression
df-mplcoe mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
Distinct variable group:   𝑎,𝑏,𝑓,𝑖,𝑘,𝑟,𝑤

Detailed syntax breakdown of Definition df-mplcoe
StepHypRef Expression
1 cmpl 14296 . 2 class mPoly
2 vi . . 3 setvar 𝑖
3 vr . . 3 setvar 𝑟
4 cvv 2763 . . 3 class V
5 vw . . . 4 setvar 𝑤
62cv 1363 . . . . 5 class 𝑖
73cv 1363 . . . . 5 class 𝑟
8 cmps 14295 . . . . 5 class mPwSer
96, 7, 8co 5925 . . . 4 class (𝑖 mPwSer 𝑟)
105cv 1363 . . . . 5 class 𝑤
11 vk . . . . . . . . . . . . 13 setvar 𝑘
1211cv 1363 . . . . . . . . . . . 12 class 𝑘
13 va . . . . . . . . . . . . 13 setvar 𝑎
1413cv 1363 . . . . . . . . . . . 12 class 𝑎
1512, 14cfv 5259 . . . . . . . . . . 11 class (𝑎𝑘)
16 vb . . . . . . . . . . . . 13 setvar 𝑏
1716cv 1363 . . . . . . . . . . . 12 class 𝑏
1812, 17cfv 5259 . . . . . . . . . . 11 class (𝑏𝑘)
19 clt 8080 . . . . . . . . . . 11 class <
2015, 18, 19wbr 4034 . . . . . . . . . 10 wff (𝑎𝑘) < (𝑏𝑘)
2120, 11, 6wral 2475 . . . . . . . . 9 wff 𝑘𝑖 (𝑎𝑘) < (𝑏𝑘)
22 vf . . . . . . . . . . . 12 setvar 𝑓
2322cv 1363 . . . . . . . . . . 11 class 𝑓
2417, 23cfv 5259 . . . . . . . . . 10 class (𝑓𝑏)
25 c0g 12960 . . . . . . . . . . 11 class 0g
267, 25cfv 5259 . . . . . . . . . 10 class (0g𝑟)
2724, 26wceq 1364 . . . . . . . . 9 wff (𝑓𝑏) = (0g𝑟)
2821, 27wi 4 . . . . . . . 8 wff (∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))
29 cn0 9268 . . . . . . . . 9 class 0
30 cmap 6716 . . . . . . . . 9 class 𝑚
3129, 6, 30co 5925 . . . . . . . 8 class (ℕ0𝑚 𝑖)
3228, 16, 31wral 2475 . . . . . . 7 wff 𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))
3332, 13, 31wrex 2476 . . . . . 6 wff 𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))
34 cbs 12705 . . . . . . 7 class Base
3510, 34cfv 5259 . . . . . 6 class (Base‘𝑤)
3633, 22, 35crab 2479 . . . . 5 class {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}
37 cress 12706 . . . . 5 class s
3810, 36, 37co 5925 . . . 4 class (𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))})
395, 9, 38csb 3084 . . 3 class (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))})
402, 3, 4, 4, 39cmpo 5927 . 2 class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
411, 40wceq 1364 1 wff mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
Colors of variables: wff set class
This definition is referenced by:  reldmmpl  14323  mplvalcoe  14324  fnmpl  14327
  Copyright terms: Public domain W3C validator