ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-oexpi Unicode version

Definition df-oexpi 6489
Description: Define the ordinal exponentiation operation.

This definition is similar to a conventional definition of exponentiation except that it defines  (/)o  A to be  1o for all  A  e.  On, in order to avoid having different cases for whether the base is  (/) or not.

We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/.

(Contributed by Mario Carneiro, 4-Jul-2019.)

Assertion
Ref Expression
df-oexpi  |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-oexpi
StepHypRef Expression
1 coei 6482 . 2  classo
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 con0 4399 . . 3  class  On
53cv 1363 . . . 4  class  y
6 vz . . . . . 6  setvar  z
7 cvv 2763 . . . . . 6  class  _V
86cv 1363 . . . . . . 7  class  z
92cv 1363 . . . . . . 7  class  x
10 comu 6481 . . . . . . 7  class  .o
118, 9, 10co 5925 . . . . . 6  class  ( z  .o  x )
126, 7, 11cmpt 4095 . . . . 5  class  ( z  e.  _V  |->  ( z  .o  x ) )
13 c1o 6476 . . . . 5  class  1o
1412, 13crdg 6436 . . . 4  class  rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o )
155, 14cfv 5259 . . 3  class  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)
162, 3, 4, 4, 15cmpo 5927 . 2  class  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
) )
171, 16wceq 1364 1  wffo  =  ( x  e.  On ,  y  e.  On  |->  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)
Colors of variables: wff set class
This definition is referenced by:  fnoei  6519  oeiexg  6520  oeiv  6523
  Copyright terms: Public domain W3C validator