ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-oexpi Unicode version

Definition df-oexpi 6508
Description: Define the ordinal exponentiation operation.

This definition is similar to a conventional definition of exponentiation except that it defines  (/)o  A to be  1o for all  A  e.  On, in order to avoid having different cases for whether the base is  (/) or not.

We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/.

(Contributed by Mario Carneiro, 4-Jul-2019.)

Assertion
Ref Expression
df-oexpi  |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-oexpi
StepHypRef Expression
1 coei 6501 . 2  classo
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 con0 4410 . . 3  class  On
53cv 1372 . . . 4  class  y
6 vz . . . . . 6  setvar  z
7 cvv 2772 . . . . . 6  class  _V
86cv 1372 . . . . . . 7  class  z
92cv 1372 . . . . . . 7  class  x
10 comu 6500 . . . . . . 7  class  .o
118, 9, 10co 5944 . . . . . 6  class  ( z  .o  x )
126, 7, 11cmpt 4105 . . . . 5  class  ( z  e.  _V  |->  ( z  .o  x ) )
13 c1o 6495 . . . . 5  class  1o
1412, 13crdg 6455 . . . 4  class  rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o )
155, 14cfv 5271 . . 3  class  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)
162, 3, 4, 4, 15cmpo 5946 . 2  class  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
) )
171, 16wceq 1373 1  wffo  =  ( x  e.  On ,  y  e.  On  |->  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)
Colors of variables: wff set class
This definition is referenced by:  fnoei  6538  oeiexg  6539  oeiv  6542
  Copyright terms: Public domain W3C validator