ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-oexpi Unicode version

Definition df-oexpi 6425
Description: Define the ordinal exponentiation operation.

This definition is similar to a conventional definition of exponentiation except that it defines  (/)o  A to be  1o for all  A  e.  On, in order to avoid having different cases for whether the base is  (/) or not.

We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/.

(Contributed by Mario Carneiro, 4-Jul-2019.)

Assertion
Ref Expression
df-oexpi  |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-oexpi
StepHypRef Expression
1 coei 6418 . 2  classo
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 con0 4365 . . 3  class  On
53cv 1352 . . . 4  class  y
6 vz . . . . . 6  setvar  z
7 cvv 2739 . . . . . 6  class  _V
86cv 1352 . . . . . . 7  class  z
92cv 1352 . . . . . . 7  class  x
10 comu 6417 . . . . . . 7  class  .o
118, 9, 10co 5877 . . . . . 6  class  ( z  .o  x )
126, 7, 11cmpt 4066 . . . . 5  class  ( z  e.  _V  |->  ( z  .o  x ) )
13 c1o 6412 . . . . 5  class  1o
1412, 13crdg 6372 . . . 4  class  rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o )
155, 14cfv 5218 . . 3  class  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)
162, 3, 4, 4, 15cmpo 5879 . 2  class  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
) )
171, 16wceq 1353 1  wffo  =  ( x  e.  On ,  y  e.  On  |->  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)
Colors of variables: wff set class
This definition is referenced by:  fnoei  6455  oeiexg  6456  oeiv  6459
  Copyright terms: Public domain W3C validator