| Intuitionistic Logic Explorer Theorem List (p. 65 of 158)  | < Previous Next > | |
| Browser slow? Try the
 Unicode version.  | 
||
| 
 Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List  | 
||
| Type | Label | Description | 
|---|---|---|
| Statement | ||
| Theorem | tfr1onlembxssdm 6401* | 
Lemma for tfr1on 6408.  The union of  | 
| Theorem | tfr1onlembfn 6402* | 
Lemma for tfr1on 6408.  The union of  | 
| Theorem | tfr1onlembex 6403* | 
Lemma for tfr1on 6408.  The set  | 
| Theorem | tfr1onlemubacc 6404* | 
Lemma for tfr1on 6408.  The union of  | 
| Theorem | tfr1onlemex 6405* | Lemma for tfr1on 6408. (Contributed by Jim Kingdon, 16-Mar-2022.) | 
| Theorem | tfr1onlemaccex 6406* | 
We can define an acceptable function on any element of  
           As with many of the transfinite recursion theorems, we have
           hypotheses that state that   | 
| Theorem | tfr1onlemres 6407* | Lemma for tfr1on 6408. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.) | 
| Theorem | tfr1on 6408* | Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 12-Mar-2022.) | 
| Theorem | tfri1dALT 6409* | 
Alternate proof of tfri1d 6393 in terms of tfr1on 6408.
 
       Although this does show that the tfr1on 6408 proof is general enough to
       also prove tfri1d 6393, the tfri1d 6393 proof is simpler in places because it
       does not need to deal with   | 
| Theorem | tfrcllemssrecs 6410* | Lemma for tfrcl 6422. The union of functions acceptable for tfrcl 6422 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.) | 
| Theorem | tfrcllemsucfn 6411* | We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6422. (Contributed by Jim Kingdon, 24-Mar-2022.) | 
| Theorem | tfrcllemsucaccv 6412* | Lemma for tfrcl 6422. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.) | 
| Theorem | tfrcllembacc 6413* | 
Lemma for tfrcl 6422.  Each element of  | 
| Theorem | tfrcllembxssdm 6414* | 
Lemma for tfrcl 6422.  The union of  | 
| Theorem | tfrcllembfn 6415* | 
Lemma for tfrcl 6422.  The union of  | 
| Theorem | tfrcllembex 6416* | 
Lemma for tfrcl 6422.  The set  | 
| Theorem | tfrcllemubacc 6417* | 
Lemma for tfrcl 6422.  The union of  | 
| Theorem | tfrcllemex 6418* | Lemma for tfrcl 6422. (Contributed by Jim Kingdon, 26-Mar-2022.) | 
| Theorem | tfrcllemaccex 6419* | 
We can define an acceptable function on any element of  
           As with many of the transfinite recursion theorems, we have
           hypotheses that state that   | 
| Theorem | tfrcllemres 6420* | Lemma for tfr1on 6408. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.) | 
| Theorem | tfrcldm 6421* | Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.) | 
| Theorem | tfrcl 6422* | Closure for transfinite recursion. As with tfr1on 6408, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.) | 
| Theorem | tfri1 6423* | 
Principle of Transfinite Recursion, part 1 of 3.  Theorem 7.41(1) of
       [TakeutiZaring] p. 47, with an
additional condition.
 
       The condition is that  
       Given a function   | 
| Theorem | tfri2 6424* | 
Principle of Transfinite Recursion, part 2 of 3.  Theorem 7.41(2) of
       [TakeutiZaring] p. 47, with an
additional condition on the recursion
       rule  | 
| Theorem | tfri3 6425* | 
Principle of Transfinite Recursion, part 3 of 3.  Theorem 7.41(3) of
       [TakeutiZaring] p. 47, with an
additional condition on the recursion
       rule  | 
| Theorem | tfrex 6426* | The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.) | 
| Syntax | crdg 6427 | 
Extend class notation with the recursive definition generator, with
     characteristic function  | 
| Definition | df-irdg 6428* | 
Define a recursive definition generator on  
       For finite recursion we also define df-frec 6449 and for suitable
       characteristic functions df-frec 6449 yields the same result as  
       Note:  We introduce   | 
| Theorem | rdgeq1 6429 | Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) | 
| Theorem | rdgeq2 6430 | Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) | 
| Theorem | rdgfun 6431 | The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.) | 
| Theorem | rdgtfr 6432* | The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.) | 
| Theorem | rdgruledefgg 6433* | The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.) | 
| Theorem | rdgruledefg 6434* | The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.) | 
| Theorem | rdgexggg 6435 | The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.) | 
| Theorem | rdgexgg 6436 | The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.) | 
| Theorem | rdgifnon 6437 | 
The recursive definition generator is a function on ordinal numbers.
       The  | 
| Theorem | rdgifnon2 6438* | The recursive definition generator is a function on ordinal numbers. (Contributed by Jim Kingdon, 14-May-2020.) | 
| Theorem | rdgivallem 6439* | Value of the recursive definition generator. Lemma for rdgival 6440 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.) | 
| Theorem | rdgival 6440* | Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.) | 
| Theorem | rdgss 6441 | Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.) | 
| Theorem | rdgisuc1 6442* | 
One way of describing the value of the recursive definition generator at
       a successor.  There is no condition on the characteristic function  If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6443. (Contributed by Jim Kingdon, 9-Jun-2019.)  | 
| Theorem | rdgisucinc 6443* | 
Value of the recursive definition generator at a successor.
 This can be thought of as a generalization of oasuc 6522 and omsuc 6530. (Contributed by Jim Kingdon, 29-Aug-2019.)  | 
| Theorem | rdgon 6444* | Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.) | 
| Theorem | rdg0 6445 | The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) | 
| Theorem | rdg0g 6446 | The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.) | 
| Theorem | rdgexg 6447 | The recursive definition generator produces a set on a set input. (Contributed by Mario Carneiro, 3-Jul-2019.) | 
| Syntax | cfrec 6448 | 
Extend class notation with the finite recursive definition generator, with
     characteristic function  | 
| Definition | df-frec 6449* | 
Define a recursive definition generator on  
       Unlike with transfinite recursion, finite recurson can readily divide
       definitions and proofs into zero and successor cases, because even
       without excluded middle we have theorems such as nn0suc 4640.  The
       analogous situation with transfinite recursion - being able to say that
       an ordinal is zero, successor, or limit - is enabled by excluded middle
       and thus is not available to us.  For the characteristic functions which
       satisfy the conditions given at frecrdg 6466, this definition and
       df-irdg 6428 restricted to  Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)  | 
| Theorem | freceq1 6450 | Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) | 
| Theorem | freceq2 6451 | Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) | 
| Theorem | frecex 6452 | Finite recursion produces a set. (Contributed by Jim Kingdon, 20-Aug-2021.) | 
| Theorem | frecfun 6453 | 
Finite recursion produces a function.  See also frecfnom 6459 which also
       states that the domain of that function is  | 
| Theorem | nffrec 6454 | Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) | 
| Theorem | frec0g 6455 | The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.) | 
| Theorem | frecabex 6456* | The class abstraction from df-frec 6449 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.) | 
| Theorem | frecabcl 6457* | 
The class abstraction from df-frec 6449 exists.  Unlike frecabex 6456 the
       function  | 
| Theorem | frectfr 6458* | 
Lemma to connect transfinite recursion theorems with finite recursion.
       That is, given the conditions  (Contributed by Jim Kingdon, 15-Aug-2019.)  | 
| Theorem | frecfnom 6459* | The function generated by finite recursive definition generation is a function on omega. (Contributed by Jim Kingdon, 13-May-2020.) | 
| Theorem | freccllem 6460* | Lemma for freccl 6461. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.) | 
| Theorem | freccl 6461* | Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.) | 
| Theorem | frecfcllem 6462* | Lemma for frecfcl 6463. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.) | 
| Theorem | frecfcl 6463* | Finite recursion yields a function on the natural numbers. (Contributed by Jim Kingdon, 30-Mar-2022.) | 
| Theorem | frecsuclem 6464* | Lemma for frecsuc 6465. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.) | 
| Theorem | frecsuc 6465* | The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.) | 
| Theorem | frecrdg 6466* | 
Transfinite recursion restricted to omega.
 
       Given a suitable characteristic function, df-frec 6449 produces the same
       results as df-irdg 6428 restricted to  
       Presumably the theorem would also hold if   | 
| Syntax | c1o 6467 | Extend the definition of a class to include the ordinal number 1. | 
| Syntax | c2o 6468 | Extend the definition of a class to include the ordinal number 2. | 
| Syntax | c3o 6469 | Extend the definition of a class to include the ordinal number 3. | 
| Syntax | c4o 6470 | Extend the definition of a class to include the ordinal number 4. | 
| Syntax | coa 6471 | Extend the definition of a class to include the ordinal addition operation. | 
| Syntax | comu 6472 | Extend the definition of a class to include the ordinal multiplication operation. | 
| Syntax | coei 6473 | Extend the definition of a class to include the ordinal exponentiation operation. | 
| Definition | df-1o 6474 | Define the ordinal number 1. (Contributed by NM, 29-Oct-1995.) | 
| Definition | df-2o 6475 | Define the ordinal number 2. (Contributed by NM, 18-Feb-2004.) | 
| Definition | df-3o 6476 | Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) | 
| Definition | df-4o 6477 | Define the ordinal number 4. (Contributed by Mario Carneiro, 14-Jul-2013.) | 
| Definition | df-oadd 6478* | Define the ordinal addition operation. (Contributed by NM, 3-May-1995.) | 
| Definition | df-omul 6479* | Define the ordinal multiplication operation. (Contributed by NM, 26-Aug-1995.) | 
| Definition | df-oexpi 6480* | 
Define the ordinal exponentiation operation.
 
       This definition is similar to a conventional definition of
       exponentiation except that it defines  We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/. (Contributed by Mario Carneiro, 4-Jul-2019.)  | 
| Theorem | 1on 6481 | Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) | 
| Theorem | 1oex 6482 | Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) | 
| Theorem | 2on 6483 | Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) | 
| Theorem | 2on0 6484 | Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) | 
| Theorem | 3on 6485 | Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.) | 
| Theorem | 4on 6486 | Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.) | 
| Theorem | df1o2 6487 | Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) | 
| Theorem | df2o3 6488 | Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) | 
| Theorem | df2o2 6489 | Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) | 
| Theorem | 1n0 6490 | Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) | 
| Theorem | xp01disj 6491 | Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.) | 
| Theorem | xp01disjl 6492 | Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) | 
| Theorem | ordgt0ge1 6493 | Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.) | 
| Theorem | ordge1n0im 6494 | An ordinal greater than or equal to 1 is nonzero. (Contributed by Jim Kingdon, 26-Jun-2019.) | 
| Theorem | el1o 6495 | Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) | 
| Theorem | dif1o 6496 | 
Two ways to say that  | 
| Theorem | 2oconcl 6497 | 
Closure of the pair swapping function on  | 
| Theorem | 0lt1o 6498 | Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) | 
| Theorem | 0lt2o 6499 | Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) | 
| Theorem | 1lt2o 6500 | Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) | 
| < Previous Next > | 
| Copyright terms: Public domain | < Previous Next > |