![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1on | Unicode version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1on |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6441 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | 0elon 4410 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | onsuci 4533 |
. 2
![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqeltri 2262 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-uni 3825 df-tr 4117 df-iord 4384 df-on 4386 df-suc 4389 df-1o 6441 |
This theorem is referenced by: 1oex 6449 2on 6450 2on0 6451 2oconcl 6464 fnoei 6477 oeiexg 6478 oeiv 6481 oei0 6484 oeicl 6487 o1p1e2 6493 oawordriexmid 6495 enpr2d 6843 endisj 6850 snexxph 6979 djuex 7072 1stinr 7105 2ndinr 7106 pm54.43 7219 xpdjuen 7247 prarloclemarch2 7448 bj-el2oss1o 14984 nnsf 15213 |
Copyright terms: Public domain | W3C validator |