| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1on | Unicode version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1on |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6525 |
. 2
| |
| 2 | 0elon 4457 |
. . 3
| |
| 3 | 2 | onsuci 4582 |
. 2
|
| 4 | 1, 3 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-1o 6525 |
| This theorem is referenced by: 1oex 6533 2on 6534 2on0 6535 2oconcl 6548 fnoei 6561 oeiexg 6562 oeiv 6565 oei0 6568 oeicl 6571 o1p1e2 6577 oawordriexmid 6579 enpr2d 6935 endisj 6944 snexxph 7078 djuex 7171 1stinr 7204 2ndinr 7205 pm54.43 7324 xpdjuen 7361 prarloclemarch2 7567 bj-el2oss1o 15910 nnsf 16144 |
| Copyright terms: Public domain | W3C validator |