| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1on | Unicode version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1on |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6502 |
. 2
| |
| 2 | 0elon 4439 |
. . 3
| |
| 3 | 2 | onsuci 4564 |
. 2
|
| 4 | 1, 3 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-1o 6502 |
| This theorem is referenced by: 1oex 6510 2on 6511 2on0 6512 2oconcl 6525 fnoei 6538 oeiexg 6539 oeiv 6542 oei0 6545 oeicl 6548 o1p1e2 6554 oawordriexmid 6556 enpr2d 6911 endisj 6919 snexxph 7052 djuex 7145 1stinr 7178 2ndinr 7179 pm54.43 7298 xpdjuen 7330 prarloclemarch2 7532 bj-el2oss1o 15714 nnsf 15946 |
| Copyright terms: Public domain | W3C validator |