| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1on | Unicode version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1on |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6504 |
. 2
| |
| 2 | 0elon 4440 |
. . 3
| |
| 3 | 2 | onsuci 4565 |
. 2
|
| 4 | 1, 3 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-1o 6504 |
| This theorem is referenced by: 1oex 6512 2on 6513 2on0 6514 2oconcl 6527 fnoei 6540 oeiexg 6541 oeiv 6544 oei0 6547 oeicl 6550 o1p1e2 6556 oawordriexmid 6558 enpr2d 6913 endisj 6921 snexxph 7054 djuex 7147 1stinr 7180 2ndinr 7181 pm54.43 7300 xpdjuen 7332 prarloclemarch2 7534 bj-el2oss1o 15747 nnsf 15979 |
| Copyright terms: Public domain | W3C validator |