| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1on | Unicode version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1on |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6562 |
. 2
| |
| 2 | 0elon 4483 |
. . 3
| |
| 3 | 2 | onsuci 4608 |
. 2
|
| 4 | 1, 3 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-1o 6562 |
| This theorem is referenced by: 1oex 6570 2on 6571 2on0 6572 2oconcl 6585 fnoei 6598 oeiexg 6599 oeiv 6602 oei0 6605 oeicl 6608 o1p1e2 6614 oawordriexmid 6616 enpr2d 6972 endisj 6983 snexxph 7117 djuex 7210 1stinr 7243 2ndinr 7244 pm54.43 7363 xpdjuen 7400 prarloclemarch2 7606 bj-el2oss1o 16138 nnsf 16371 |
| Copyright terms: Public domain | W3C validator |