ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoei Unicode version

Theorem fnoei 6420
Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
fnoei  |-o  Fn  ( On  X.  On )

Proof of Theorem fnoei
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oexpi 6390 . 2  |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)
2 vex 2729 . . 3  |-  y  e. 
_V
3 1on 6391 . . . . 5  |-  1o  e.  On
43elexi 2738 . . . 4  |-  1o  e.  _V
5 vex 2729 . . . . . 6  |-  z  e. 
_V
6 vex 2729 . . . . . 6  |-  x  e. 
_V
7 omexg 6419 . . . . . 6  |-  ( ( z  e.  _V  /\  x  e.  _V )  ->  ( z  .o  x
)  e.  _V )
85, 6, 7mp2an 423 . . . . 5  |-  ( z  .o  x )  e. 
_V
9 eqid 2165 . . . . 5  |-  ( z  e.  _V  |->  ( z  .o  x ) )  =  ( z  e. 
_V  |->  ( z  .o  x ) )
108, 9fnmpti 5316 . . . 4  |-  ( z  e.  _V  |->  ( z  .o  x ) )  Fn  _V
114, 10rdgexg 6357 . . 3  |-  ( y  e.  _V  ->  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)  e.  _V )
122, 11ax-mp 5 . 2  |-  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)  e.  _V
131, 12fnmpoi 6172 1  |-o  Fn  ( On  X.  On )
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726    |-> cmpt 4043   Oncon0 4341    X. cxp 4602    Fn wfn 5183   ` cfv 5188  (class class class)co 5842   reccrdg 6337   1oc1o 6377    .o comu 6382   ↑o coei 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-oexpi 6390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator